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ABSTRACT

Zhuang, Xin. M.S.E., Purdue University, December 1990. Determining Crop Residue Type and
Class Using Satellite Acquired Data. Major Professor: Bemard A. Engel.

Landsat TM data for March 23, 1987 and April 26, 1988 with accompanying ground truth
data for the study area in Miami County, IN were used in this study to determine crop residue
type and class. Principal components and spectral ratioing transformations were applied to the
Landsat TM data. One GIS layer of land ownership was added to each original image as the
eighth band of data in an attempt to improve classification. Maximum Likelihood, Minimum
Distance, and neural networks, which are an emerging artificial intelligence technique, were
used to classify the original, transformed and GIS-enhanced remotely sensed data. Crop resi-
dues could be separated from one another and from bare soil and other biomass. Two types of
crop residues and four classes were identified from each Landsat TM image. The Maximum
Likelihood classifier performed the best classification for each original image without need of
any transformation. The neural network classifier was able to improve the classification by
incorporating a GIS-layer of land ownership as an eighth band of data. The Maximum Likeli-
hood classifier was unable to consider this eighth band of data and thus its results could not be

improved by its consideration.



1. INTRODUCTION

Crop residues are the portions of a crop that are left in the field after harvest. They are a
tremendous natural resource — not a waste as some have termed them. They add organic matter
content to soils and this adds plant nutrients; improves soil structure; influences soil water, air,
and temperature relations; helps control runoff and erosion; and makes tillage easier. Crop resi-
dues can also improve water quality. Therefore, the management of crop residues has a large

impact on the quantity and quality of soil and water resources.

Soil erosion is a problem in the United States. Water erosion is more serious than wind
erosion in Indiana and most of the Midwest. Recent U.S. Department of Agriculture surveys
(Mannering, 1990) of average erosion rates on Indiana cropland estimate 7' tons per acre per
year on gentle slopes (2-6%), 11 tons annually on moderate slopes (6-12%), and 29 tons on
steep slopes (12-18%). This indicates that on sloping croplands the rates of soil loss are exceed-
ing the annual rate of soil formation, which is considered to be about five tons per acre or less.

Erosion rates greater than five tons per acre will eventually reduce soil productivity.

Studies relating cropland agriculture to water quality show that 4-5 billion tons of sedi-
ment are being deposited in this nation’s streams each year, with over half coming from crop-
land (Mannering, 1990). It gets there largely as a result of runoff associated with rainstorms.
Moreover, sediment often carries chemicals, such as phosphorus, that cause contamination of

water.



Conservation tillage is the best nation-wide solution to maintaining soil productivity and
improving water quality. A conservation tillage system is a tillage system which reduces runoff
and soil loss either by: 1) leaving appreciable crop residues on the soil surface; 2) leaving the

surface rough and cloddy or ridged; or 3) a combination of the two.

Surface residue is effective because it protects the soil from detachment; it minimizes sur-
face crusting, thus increasing infiltration rates; and it slows runoff velocities, thus reducing its

ability to transport sediment.

Research on residue effectiveness in reducing soil erosion (Wischemeier, 1978) showed
that if 50% of the surface is covered, soil loss will be reduced to 32% of that with no mulch
present. A surface cover of 80% will reduce soil loss to 13% of that with no mulch, and 100%
cover will practically eliminate soil loss. At low mulch application rates, a well-anchored mulch

covering 20% of the soil surface will reduce soil loss to 60% of that with no mulch.

Modeling soil erosion is useful for understanding its control. Several soil erosion models
require residue cover data. They include the Universal Soil Loss Equation (USLE)
(Wischemeier and Smith, 1978), the Areal Nonpoint Source Watershed Environmental
Response Simulation (ANSWERS) (Beasley et al., 1980), the Water Erosion Prediction Project
(WEPP) (Foster and Lane, 1987), and the Chemical, Runoff and Erosion Agricultural Manage-

ment System (CREAMS) (Knisel, 1980).

The estimation of cropland residue cover is vital for conservation tillage programs. Five
methods of estimating crop residues have been commonly used. They are the meterstick method
(Hartwig, 1978), the line-transect method, the photographic method, the scanning microdensi-
tometry method (Lowery et al., 1984), and the empirical method (Hill et al., 1989). Each of

them has limitations to a range of cover and topographic conditions.



Remotely sensed data, such as satellite images have been used in the applications of crop
inventory and land use and have potential for determining crop residue type and amount. One
satellite image covers a much larger area than the conventional methods mentioned previously.
For example, a Landsat TM scene covers 185x185 km?2. Given the ground truth corresponding
to a portion of a satellite scene, the scene can be classified to estimate crop residue cover. Based
on research in the area of remote sensing, the hybrid classification of satellite images, i.e. the
combination of supervised classifications and unsupervised classifications, nearly always

presents the bests result for the applications of crop inventory and land use.

Research in the discipline of artificial intelligence has shown that neural networks, one
branch of artificial intelligence, are the latest alternative for classification of multispectral
remotely sensed data. A neural network (NN) is a computing system with a number of simple,
highly interconnected processing elements which process information in parallel by their
dynamic state response to external inputs. The classification of a satellite image using a neural
network with back-propagation, which is a widely-used leaming rule for neural networks, is

called neuro-classification in this research.

Although neuro-classification follows procedures similar to conventional (statistical)
classifications such as Maximum Likelihood and L1 Minimum Distance, it has major advan-
tages over them in terms of statistical assumptions. In addition, it can theoretically integrate
non-remotely sensed data into the process to improve classification accuracy. However, neuro-
classification did not perform better than conventional classifications on a very high dimen-

sional (more than 20 channels) image (Benediktsson ez al., 1990b).



1.1 Objectives

The primary objective of this research is to develop methods for determining crop residue

type and class using satellite data.
Specific objectives required to achieve the primary objective are:

1. to determine crop residue type and class (amount) using conventional classification

methods.
2. to explore improvements to classification methodology using neural networks,

3. to make a comparison of the classification results from objectives 1 and 2.

1.2 Organization

This thesis documents the methodology of estimating crop residue cover using remotely

sensed data and several remote sensing techniques.

The next chapter, LITERATURE REVIEW, reviews the related background literature.
The first portion of this chapter includes several remote sensing techniques and applications in
agriculture. The second portion of this chapter is a review of neural networks which are an
emerging artificial intelligence technique, including the concept, a most commonly-used leam-
ing algorithm, back-propagation, and the application in image classification. The third portion
of this chapter examines five conventional techniques for measuring crop residues. These
methods are the meterstick method, the line-transect method, the photographic method, the

scanning microdensitometry method and the empirical method.



Chapter 3 is MATERIALS AND METHODS. It describes the data resources, ground
truth data processing, neural network classifiers and the remote sensing methods for estimating

crop residue cover developed in this study.

The next chapter, RESULTS AND DISCUSSION, presents and discusses the results
obtained from all methods used in this study. Comparisons for the different methods are made

based on the results. Consequently, the best methods are recommended.

Chapter 5 presents a SUMMARY AND CONCLUSIONS from this study. The final
chapter, RECOMMENDATIONS FOR FURTHER RESEARCH, provides suggestions for

further study.



2. LITERATURE REVIEW

This chapter will review: applications of remote sensing related to agriculture; neural net-
works with a learning rule suitable for image processing; and methods of estimating crop resi-

dues.

2.1 Remote Sensing

The review of image transformations, three conventional types of classification of

remotely sensed data, and the applications of remote sensing in agriculture follows.

2.1.1 Image Transformation

Image transformations can either enhance multispectral image data or improve image
classification. This review focuses on the two most-commonly used transformations, spectral

ratioing and principal components.

Spectral Ratioing

An image generated from spectral ratioing is the enhancement resulting from the division
of digital number values in one spectral band by the corresponding values in another band. It is

often useful for discriminating subtle spectral variations in a scene because of the following two



reasons (Mather, 1987): a) certain aspects of the shape of spectral reflectance curves of dif-
ferent Earth-surface cover types can be brought out by ratioing; and b) undesirable effects on
the recorded radiances such as the effect of variable illumination resulting from variations in
topography can be reduced.

Principal Components

The principal components transformation is used to transform image data to uncorrelated
data in a new coordinate system and to reduce the dimension of multispectral information. That
is, the principal components transformation is one of the techniques designed to compress the
multispectral information into a smaller number of bands. As a preprocessing procedure prior to
image classification, this transformation generally increases the computational efficiency of the
classification process because of the uncorrelated transformed data and the ability of analysis
based on a smaller number of bands. All of the information represented are usually dominated
by the first few components in the new coordinate system and this subset of wavelength bands
may then be used for viewing and for classification. However, the importance of the lower-
order principal components was pointed out by P.M. Mather (1987). The principal components
transformation does not enhance separability since it is a linear transformation that rotates and

translates the original coordinate system.

2.1.2 Image Classification

The purpose of computer classification of remotely sensed data is to categorize all pixels
based on their numerical properties into physical classes. One way to categorize conventional

types of classification is as follows:



a. supervised,
b. unsupervised, and

C. hybrid, i.e. the combination of supervised and unsupervised.

Supervised Classification

In supervised classification, every pixel is categorized into one of the training classes
which are determined from ground reference data. Training fields are chosen interactively by

the analyst.

L1 Minimum Distance is one of the supervised classifiers that identifies an unknown
pixel by computing the absolute distance between the value of the unknown pixel and each of
the information class means. The information category means are calculated before
classification. An example of this classifier is illustrated in Figure 1. The unknown pixels have
been plotted at points 1 and 2. The distance between unknown pixel 1 and each class mean
value is shown by dashed lines in Figure 1. After computing the distances, the unknown pixel

(Pixel 1) is assigned to the "closest” class, in this case "com."

L1 Minimum Distance is mathematically simple and computationally efficient, but it has
certain limitations. Most importantly, it is insensitive to different degrees of variance and corre-
lation in the spectral response data (Lillesand and Kiefer, 1987). In Figure 1, unknown pixel 2
would be assigned by this classifier to the category “"sand,” in spite of the fact that the greater
variability in category "urban" suggests that "urban" would be a more appropriate class assign-
ment. Because of such problems, this classifier is not widely used in applications where spec-

tral classes are close to one another in the measurement space and have high variances.

Maximum Likelihood is the most widely used supervised classifier for remote sensing



image data. It quantitatively evaluates both the variance and covariance, as well as the mean, of
the class spectral response pattems when classifying an unknown pixel. Under the assumption
of normality, the distribution of a class response pattern can be completely described by the
mean vector and the covariance matrix. Given these parameters, we may compute the statistical

probability of a given pixel value being a member of a particular land-cover class.

Compared to L1 Minimum Distance, Maximum Likelihood almost always presents an
acceptable result, if the distribution of data is Gaussian, though it is mathematically and compu-
tationally complicated. Figure 2 illustrates a Maximum Likelihood classifier applied to the same
data set as shown in Figure 1. In this case, the classification of unknown pixel 1 was in agree-
ment with that in Figure 1, but unknown pixel 2 was correctly identified as "urban" by the Max-

imum Likelihood classifier.

L1 Minimum Distance and Maximum Likelihood are often used because they are easily
implemented on a computer. As described above, L1 Minimum Distance considers only the first
order statistic, mean; while Maximum Likelihood includes both the first order and second order
statistics, mean and covariance. Therefore, the latter one is better in classification than the
former one if the decision boundaries are not easy to separate the classes in the measurement

space.

Unsupervised Classification

In unsupervised classification, all pixels in an image are first aggregated into the natural
spectral groupings or clusters presented in the scene based on the given criteria. There is no
training data as the basis for classification. Then, these clusters are identified and labeled by

comparing to ground reference data.
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Figure 1. Minimum distance to means classification strategy.
(Source: Lillesand and Kiefer, 1987)
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Figure 2. Equiprobability contours defined by a maximum likelihood classifier.
(Source: Lillesand and Kiefer, 1987)

Hybrid Classification

Usually, ground reference data are available for only a portion of the area of an image. It

is difficult to select training samples for some areas such as rivers and streams. Therefore, the
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types of classification described above have to be used together. In classification, training sam-
ples are first chosen for the fields for which ground reference data has been collected. Then clus-
tering is performed for those areas without ground truth data or for which adequate pixels can-
not be selected. The clustering groups are labeled and added into the training samples as a
whole afterwards. Finally, the image is classified based on the entire training set using the
supervised approach. The entire process is called hybrid classification. Hybrid classification
almost always gives a higher result accuracy than either supervised or unsupervised

classification alone.

2.1.3 Remote Sensing Applications in Agriculture

The development of remote sensing started more than twenty years ago. Certainly, there
are more than the two applications in agriculture which will be described below. However, what

is presented here focuses on applications in crop inventory and soils.

Crop Inventory

Crop inventory has long been recognized as an important application of remote sensing.
With the rapidly increasing world demand for food, the value of accurate and timely crop pro-
duction information is substantial. The wide-area, sequential coverage from Landsat combined
with the capabilities of computer processing offers a new opportunity to improve the accuracy,

precision and timeliness of crop production estimates.

Quantitative evaluations of computer processed Landsat data show that major crop
species can be accurately identified. Comparisons of area estimates from Landsat classifications

and conventional surveys agree well, and the Landsat estimates have a very small sampling
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error compared with estimates from ground surveys (Colwell, 1983). Current investigations are
verifying the applicability of computer-aided analysis of Landsat data for identifying crops and
making area estimates over a wide range of environments with differing soils, weather and cul-

tural practices.

In other studies the use of remotely sensed data for determining crop condition and
predicting yield is being investigated. The extent and severity of stresses, such as disease and
drought, have been determined from remotely sensed data. At this time, remotely sensed data

are being used for the prediction of crop yields.

Soils
Soil investigations, soil survey, and soil mapping are three types of applications using
remotely sensed data. They include three kinds of studies: the effects of soil properties on

reflectance, the influence of soil surface conditions on reflectance, and the use of imagery in soil

mapping (Wu, 1988).

The research on the characteristic variations in soil reflectance (Baumgardner and Stoner,
1982) showed five distinct soil spectral reflectance curves (see Table 1 and Figure 3), consider-
ing curve shape, the presence or absence of absorption bands, and the predominance of soil
organic matter, iron oxide composition and soil moisture. The results are important for the

study of spectral reflectance of low residue cover since reflectance is influenced by soil beneath.

Remotely sensed data also were used to monitor conservation tillage practices with an
acceptable classification accuracy (DeGloria, 1986) and to estimate the crop rotation (C) values
for the USLE (Stephen, 1985). The estimation of crop residues using remotely sensed data will

be described in more detail following the next section.
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Figure 3. Representative reflectance spectra of surface samples of five mineral soils (Table 1):
a. organic-dominated (high organic content, moderately fine texture)
b. minimally altered (low organic, medium iron content)
c. iron-affected (low organic, medium iron content)

d. organic-affected (high organic content, moderately coarse texture)

e. iron-dominated (high iron content, fine texture)

(Source: Baumgardner and Stoner, 1982)

2.2 Neural Networks

Development of neural networks in engineering in recent years has been rapid and
surprising, although neural networks have been studied biologically for a couple of decades.
Applications of neural networks include pattern recognition, knowledge data bases for stochas-

tic information, optimization computation, robot control and decision making. Neural networks
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have been proposed for tasks ranging from battlefield management to minding the baby
(Wasserman, 1989). Potential applications are those where intelligent functions are performed

effortlessly and conventional computation has proven cumbersome or inadequate.

The following section introduces the concepts of neural networks, back-propagation
(which is a widely-used neural network learning algorithm) and classification of remotely

sensed data using neural networks.

2.2.1 Neural Network Terminology

Neural networks are brain-like computers. Like all computers, they have hardware and

software. What is presented in the following section focuses on their software.

The human brain is the oldest, the most complex, powerful and mystified computer
known to man. The brain’s powerful thinking, remembering, and problem-solving capabilities
have inspired several generations of scientists to attempt computer modeling of its operation.
Some scientists have sought a computer model to mimic the functionality of the brain in a very

simplified manner, i.e. the study of neural networks.

What is a Neural Network?

A neural network is a computing system that is made up of numerous simple, highly
interconnected processing elements which process information in parallel by their dynamic state
response to external inputs. This means that the neural network does not execute a series of
instructions; it responds, in parallel, to the inputs presented to it. The results are stored in both
distributed and associative memory, namely called neural computing memory, after it has

reached some equilibrium condition. Neural networks don’t "execute programs” as much as
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they "behave", given a specific input. Instead, they "react,” "self-organize,” "leamn," and "forget"

(Caudill, 1988).

Neural networks can mimic the human brain functionally in that there are different
weights for connections which are similar to those on human synapses (Zhuang and Engel,

1990a). This is a key point for neural network applications in many areas.

Neural networks do not work well at precise, numerical computation such as calculating
the payroll (Wasserman, 1989). On the other hand, this form of computation is not a natural
application for people either. A neural network is an excellent partner to more traditional sys-
tems, such as expert systems or simulation. Combined systems will coexist with neural net-

works performing the tasks for which they are best suited.

The Brain and Neural Networks

The structure of neural networks in contrast with the nervous system will be described.
The neuron is the fundamental cellular unit of the nervous system and in particular of the brain.
In a neural network, the corresponding unit is a processing element (PE). Figures 4 and 5 illus-
trate the structures of a neuron and a PE, respectively. The basic components of a neuron and a

PE are listed in Table 2.

The human brain consists of tens of billions of densely interconnected neurons. However,
a neural network usually is made up of several thousand PEs at most, considering the capability
and speed of a computer. They join in a manner similar to that shown in Figure 5. Elements are
then organized into a sequence of layers which can be described by matrices with full or ran-

dom connections between successive layers.
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Figure 5. Structure of a processing element.
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Table 2. Neuron and processing element components.

Component Name Function

Nucleus Receives & combines signals from its dendrites.

Sum & Transfer Combines input values and thresholds them.
Function

Dendrite Channel from other neurons.

Input Path Channel from other PEs.

Axon Passes output signals to other neurons.

Output path Passes output signals to other PEs.

Synaptic strength Amount of signal transferred across synapse

Weight A major parameter of connection

* Synapse : a junction from a neuron to the dendrites of another one.

Neural Network Operation

There are two main phrases in the operation of a neural network — leaming and recall
(NeuralWare, 1989). Learning is the process of self-adjusting the connection weights in
response to stimuli presented at the input layer and optionally at the output layer. If a desired
output to a given input is shown, the leamning is supervised leaming; if a desired output is not
shown, the leamning is unsupervised leaming. There is still a third kind of learning falling
between supervised and unsupervised learning called reinforcement leaming where an external
teacher indicates whether the response to an input is good or bad. Recall refers to how the net-
work globally processes a stimulus presented at its input layer and creates a response at the out-

put layer.
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2.2.2 Historical Perspective

The work of scientists and biologists in the past thirty years has shaped the development
of neural networks. The first project in neural computing, Perceptron (NeuralWare, 1989), was
initiated in 1957 by Frank Rosenblatt at Comell Aeronautical Lab. Two years later, Bemard
Widrow, at Stanford University, contributed a great deal in neural computing with his adaptive
linear element called Adaline (Widrow and Hoff, 1960). James A. Anderson continued his
work developing the linear associator (NeuralWare, 1989). Can neural networks self-organize?
The answer is provided by the Kohonen model, proposed by Teuvo Kohonen of the Helsinki
Technology University in Finland. Self-organization (Kohonen, 1984) means to learn without
being given the correct answer for a set of inputs. The neurode wins through competitive leam-
ing. This kind of philosophy is called “winner takes all". One of the most complex neural net-
works ever invented was developed by Stephen Grossberg and Gail Carpenter of the Center for
Adaptive Systems at Boston University which is based on adaptive resonance theory (ART)
(Caudill, 1988). ART networks and algorithms maintain the plasticity required to leam a new
pattern, while preventing the modification of pattemns that have been leamed previously

(Wasserman, 1989).

2.2.3 Back-propagation

The most popular, successful and widely used leaming algorithm today is back-
propagation. To solve a problem with a back-propagation network, you show it training inputs
with the desired outputs, namely called /O pairs, over and over, while the network learns by

adjusting its weights on connections. Once it arrives at the desired error, it will have found a set
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of weights that produce the correct output for every input, and remembers these weights which

| ]
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will be used to solve the problem.
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Figure 6. Activation flows forward while errors flow back through the network.

Back-propagation consists of two passes, as shown in Figure 6, which are the forward
pass and backward pass. In the forward pass, inputs proceed through the network and generate
an output. Then, in the backward pass, the difference between the actual and desired outputs
generates an error signal that is propagated back through the network to teach it to come closer

10 producing the desired output.

The first generation of the back-propagation algorithm was the Delta rule or Least Mean
Squared (LMS) rule (Widrow and Hoff, 1960). The best known network using the Delta rule is
called ADALINE which uses the Delta rule to adjust the weights on its input connections to
learn to sort input patterns into categories. Another generation of the Delta rule is called the

generalized delta rule which adjusts the weights on internal units based on the error at the out-
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put. It is currently used by most back-propagation neural networks.

2.2.4 Neuro-classification

Although improvements in remote sensing techniques have been made continuously, few
of them have had the impact on quality and quantity of classification as has classification using
neural networks. Neuro-classification of Landsat data has created a new horizon for remote

sensing.

The advantage of neuro-classification over conventional approaches lies in that we do not
need to make a distribution assumption about the image data, and can easily combine other than
remotely sensed data that may improve the classification accuracy. Neuro-classification is non-
parametric. The key point of successful neuro-classification is the representativeness of its

training data.

Neural networks have been applied to several types of classification of multispectral
remotely sensed data. Neuro-classification, when applied to Landsat MSS data merged with
geographic data including elevation, slope, and aspect, was better than conventional
classifications (Benediktsson et al., 1990a), and was worse than them when it was employed to
very high dimensional data (more than 20 channels) (Benediktsson et al., 1990b). A four-band
(bands 1, 2, 3 and 4) Landsat TM image (459 x 368 pixels ) with four land-cover classes (water,
urban, forest and grass) was classified by Hepner et al. (1990). It was concluded that the neural
classifier, which used a minimal training set compared with the Maximum Likelihood classifier,
performed well for all areas including those for which the conventional approach did not.

Decatur’s (1989) conclusion conceming his classification of the SAR data (896 x 1024 pixels)
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with three classes (urban, park and ocean) was that the neuro-classifier presented better results
than the Bayesian classifier when accurate assumptions about probability density functions
could not be made and a priori probability could not be given. A merged image of AVHRR and
SMMR data for an Arctic area was classified by Key et al. (1989) using traditional and neural
classifiers. They showed that the neural classifier had greater flexibility than the Maximum
Likelihood classifier for classifying indistinct classes, for example, classes containing pixels
with spectral values that differ significantly from those in the training areas, while ignoring

assumptions of statistical normality.

2.3 Estimation of Crop Residues

Crop residue cover estimation is not only useful in planning field operations to maintain
erosion control and water quality but is sometimes needed to determine if a particular field
qualifies for certain federal, state, or local conservation programs (Hill et al., 1990). It is also

useful for determining pesticide and fertilizer application rates.

2.3.1 Traditional Methods for Estimating Crop Residues

Following are five methods for estimating the percentage of crop residue cover in an area.
They are the meterstick method, the line-transect method, the photographic method, the scan-
ning microdensitometric method, and the empirical method. The first four are accomplished
with field observations; the last requires generalizations and calculations and is used primarily

for conservation planning purposes.
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Meterstick Method

The meterstick method (Hartwig et al., 1978) involves placing a meterstick on the soil
surface perpendicular to the plant row. Beginning at one row and ending at an adjacent row, the
total length of residue under the meterstick, along one edge of the meterstick, is measured. The
percentage of the total row width covered by residue is the residue cover value. The meterstick

method is seldom used now because of the effort required to collect the data.

Line-Transect Method

For the line-transect method (Hill ez al., 1989), a commercially available tape or rope, 50
feet long, is stretched diagonally across the crop rows (see Figure 7). The percentage of residue
is then determined by counting the number of foot marks that intersect or lie directly over a
piece of residue and multiplying by two. At least five measurements at sites typical of the entire

field, except in tum-way areas, are taken and averaged to obtain the residue estimate.

The line-transect method is actually a sampling procedure used to estimate the percentage
of the length of a line over residue. If used properly, without operator bias, it is an accurate

method. However, significant effort is required to collect the residue data.
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Figure 7. Overview (inset) and close-up of the line-transect method.

Photographic Method

(Source: Hill et al., 1989.)

The photographic method consists of photographing the area between adjacent crop rows

from a nearly vertical angle. The slide is then projected on a gridded screen. Residue cover is

the percentage of the intersections of the grid over residue. An alternative procedure is to photo-

graph a grid on the ground surface and to determine from the projected slides the percentage of

intersections over

residue.

The photographic method is also a sampling procedure used to estimate the percentage of

an area covered with residue. However, it has a lower accuracy than the line-transect method

(Laflen et al., 1981). This method also requires a significant amount of time to collect residue

data for large areas.

POOR QuAL Ty
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Scanning Microdensitometric Method

The scanning microdensitometer assigns digital values to light intensities on a photo-
graph. The device measures density by shining light through film transparencies. The amount of
light passing through a transparency depends on the opacity of the image. The darker the image,
the less light passes through and the higher the density. The percentage of residue cover is
determined by the density (Lowery et al., 1984). The densitometric method produces results

with similar accuracies to the three methods discussed above but requires less time and labor.

Empirical Method

This method is different from those described above in that the empirical method calcu-
lates the likely percentage of residue cover after weathering and individual tillage operations,
rather than requiring field observation (Hill et al., 1989). This method is adequate for long-
range conservation planning and for predicting tillage effects on residue cover, although it is

less accurate on a year-to-year basis due to variation in weathering and tillage equipment use.

Table 3 shows the ranges in percent of residue remaining after various tillage or planting
operations. For a given implement, actual percentage remaining is a result of several factors,
including operating speed, operating depth, and soil and residue condition, In the table, the
lower end of the percentage ranges should be used for fragile residues like soybeans, while the

upper range corresponds to com residue.
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Table 3. Influence of various field operations on surface residue remaining.

Reslidue
remaining
after each

Tillage and planting implements operation*
Moldboard piow 31t05%
Chisel piow

Straight points 50 to 80%

Twisted points 30 10 60%
Knife -type fertilizer applicator 50 to 80%
Disk (tandem or offset)

3" deep 40 to 80%

6" deep 30 to 60%
Field cultivator 50 to 80%
Planter

Smooth or no coulter 90 to 95%

Narrow ripple coulter 85 to 90%

(less than 1.5" fiutes)
Wide fluted coulter 80 to 85%

(greater than 1.5" flutes)
Sweeps or double disk furrowers €0 to 80%

(till -ptant)
Drills .
Disk openers 80 o 95%
Hoe openers 50 to 80%
Winter weathering 75 to 85%

* Use higher values for com residue and lower vaiues
for fragile residue, such as from soybeans.

(Source: Hill et al., 1989.)

For an estimate of residue remaining after planting, a multiplication of initial crop cover
(approximately 95% for 120-bu com, 85% for 38-bu. soybeans); winter weathering loss, and
the appropriate percentage for each operation that makes up a tillage-planting system is per-
formed. The empirical method provides only rough estimates since the variables involved
prevent accurate determination of residue cover. However, Table 3 can be helpful in comparing

tillage systems because it empirically gives the residue data remaining after specific tillage and

planting operations.
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2.3.2 Estimation of Crop Residues Using Remotely Sensed Data

Remotely sensed data, which refers to aerial photographs and satellite images, have
advantages in the range of cover and topographic conditions for which it is applicable compared
to the conventional methods for determining residue cover. This method could also substan-
tially reduce the field time needed to ensure compliance of agricultural conservation practices in

the U.S. Department of Agriculture cost-sharing programs (Whiting et al., 1987).

Compared to an aerial photograph, a satellite scene is less expensive on an area basis, less
disturbed, and larger in the area of cover, and thus, the estimation of residue cover using satel-

lite images is of interest for large areas and will be discussed further.

Using this method, the training and testing fields corresponding to sound ground truth
within the area of coverage are first selected. The ground truth of residue cover on the area can
be collected using one of the methods described in the previous sections or be calculated by the
empirical method according to information on crop yields, weathering, tillage and planting.
Then based on the satisfactory classification of these fields, the satellite image corresponding to

the entire area of interest can be classified to determine crop residues for the entire area.

The project that estimated crop residues in Seneca County, Ohio using Landsat TM data
showed that if sound ground truth could be obtained, determining crop residues using satellite
data could be a fast and cost effective way of monitoring tillage (Olsen, 1986). However,

improvements in the classification process and accuracy of results are needed.
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3. MATERIALS AND METHODS

3.1 Site Description

A study area of approximately 2.56 x 103 acres was included in this research. It was com-
posed of sections 3, 4, 9 and 10 located in T28N, RSE Richland township of Miami County,
Indiana. The four sections’ land uses included com, soybeans, grasslands, forest, roads, an aban-
doned railroad, farmsteads and the Eel River. Portions of the area are owned by 58 farmers (see
Figure 8). This area is representative of much of northemn Indiana and other Midwestemn u.s.

states.

Figure 8. Ownership boundaries for sections 3, 4,9 and 10.
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3.2 Data Sources

The following were the data sources utilized in this study:

1. Ground cover survey data for section 9 for years 1986, 1987 and 1988.

2. Landsat thematic mapper data for March 23, 1987, and April 26, 1988.

3. Copies of airphoto mosaics for Miami County, T28N, R5E Richland township, sections 3,
4,9 and 10, 1987, approximate scale: 1:24,000.

4. USGS (US. Geological Survey) topographic map (Roann, Indiana Quadrangle),
1:24,000.

5. Digitized ownership map, scale: 1:24,000.

Since the latest Landsat TM data were not provided by NASA for this study, the
corresponding ground truth data had to be collected through a survey which will be described in
the following section. Theoretically speaking, ground truth data should be collected at the same

time as the satellite crosses the area of interest.

3.3 Ground Truth Data

Since the ground truth data could not be collected directly from the fields for the dates
corresponding to the Landsat data (March 23, 1987 and April 26, 1988), estimates of crop resi-

dues were obtained through a survey. Ground truth data accompanying the corresponding
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copies of the flown aerial photographs of the area were provided by Jack Hart of the Coopera-
tive Extension Service office of Miami County, Indiana in the form shown in Figure 9. They
contain the information about ownership, field number, acreage, crop type, tillage-planting sys-
tems used, date of Fall or Spring tillage, date of planting, date of harvest, and soil management.
All survey data are listed in Appendix A. The copies of the flown aerial photographs are listed
in Appendix B. Crop yields were obtained in the form of average values from the Extension

office and are listed in Table 4.

Table 4. Crop yields including residue cover after harvesting for Miami County, Indiana.

Year Com Soybeans Wheat Oats Hay
(bw/%) (bu/%) (bu) (buw) (tons)

1986 124 /98%" 38/85% 44 79 3.1

1987 137 /100% 44 /98% 62 73 3.7

1988 80/63% 28 /63% 48 44 1.7
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Residue cover percentage (i.e. ground truth data) was calculated by the following formula

(Hill, 1989):

R=IXWxXxTxP [3.1]

where

R is the residue cover percentage,
Lis initial crop residue cover related to yields (given in Table 4),

W is the winter weathering loss (if not Fall moldboard plowed): 85% for com and 75% for
soybeans.

T is the tillage operation(s) factor given in Table 3.

P is the planting operation factor given in Table 3.

The residue cover results are for the Spring after harvesting the crop. However, there were no
satellite data in agreement with the exact time for which residue data were available, and the
crops of comn, soybeans and wheat were planted at different times. Therefore, besides the resi-
due cover after the spring planting, the residue cover percentage coinciding with each satellite

crossing date was also computed and listed in Tables 5 and 6.

As shown in each table, all information related to field number, acreage, crop type,
tillage-planting practices, harvesting time and crop yield were preprocessed and listed. The last
two columns in the tables refer to residue percentages: the first one corresponding to residue
cover after the next spring planting, and the second corresponding to residue cover on the satel-

lite crossing date of that year (March 23, 1987 or April 26, 1988).
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3.4 Neural Network Classifier

The learning algorithm used for the neural network classifier, back-propagation; the
neural network configurations used for classifications of original, transformed, and generated
images; the neural network software package used in this study; and its interface routines will

be discussed in detail in the following sections.

3.4.1 Neuro-classifier Algorithm: Back-propagation

The three-layer back-propagation system used by the classifiers previously shown in Fig-
ure 6 will be described. Its result can be extended to systems with more than three layers by
induction. A t-D input vector v shown in Figure 10, for which every component denotes a unit
(neurode or node) in the input layer, is first multiplied by the matrix N, which is a s X t matrix
and illustrates the connection between the input layer and the hidden layer, to produce a s-D

vector z for the set of hidden units:

z=Ny, [3.2]

and then z is multiplied by M, which is a r x s matrix and illustrates the connection between the

hidden layer and the output layer, to produce a r-D output vector u:

u=Mz. (3.3]

in which its every component denotes a unit in the output layer. Substituting Nv for z yields the

response for the composite system:
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u=MQv). [3.4]

output
layer u
glh
) M
hidden 1;‘
Jlayer ot
N
gh)
input v
layer

Figure 10. Network structure of a three-layer back-propagation system.

This equation relates the input vector v to the output vector u. Substituting W for (MN), the

equation becomes:
u=M@v) = (MN)v =Wy, {3.5]

The i, jth element of W is the inner product of the ith row of M with the jth column of N. Note
that matrix multiplication is not commutative. Figure 11 shows a matrix-mapping structure of
the three-layer back-propagation system. Therefore, there will be k transform matrices for a k+/
layered system; the number of transform matrices in a specific system equals the number of

layers minus one, that is:
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W =N,..N;Nj. 13.6]

Here, N; refers to the connection between the ith layer and the i+7th layer in one system. Note

that the order of multiplication is important. The matrix denoting the connection with the suc-

cessive layer must be premultiplied each time.

@ w W) = — — . @ { input connection ]

mil mat me1 o\ nvi ni2 nie
\
mi2 m22 mr2 o nat n22 nat
&
I
!
Mmis ma2s Mrs fl\ Nst Ns2 Nst
&r

[ output connection | @ @ - = @

Figure 11. Matrix-mapping structure of the three-layer back-propagation system.
n;;: ancntry of matrix N
m;; : ancntry of matrix M

In matrix notation the back-propagation algorithm can be written as:
W(n+1)=W(n) + n8(n)vT(n) + o(W(n) - W(n—1)) [3.7]

n=12--
where W(n) is the the state of the connection matrix after n presentations, v(n) is the input
presented on the ath presentation, 1 is the leaming constant which is a scalar constant rcferring

to leaming speed, o is the momentum constant which is a scalar and dctecrmines the effects of
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past weights on the convergence in weight space, and d (n) is the difference between the desired

and actual output on trial n, such that

3(n) = t(n) - W(n—1)v(n) (3.8]

where t(n) is the desired output for presentation n and W(n-1)v(n) = u(n) is the output actually

produced on that presentation. W(0) is assumed to be an identity matrix.

3.4.2 Neural Networks for Classification

Based on research previously done in neuro-classification of satellite image data, the
three-layer back-propagation scheme was employed for the neural networks used in this study.
The data preprocessing methods for neural networks including coding and connections are

described in this section.

Decimal coding was tested for the input layer, but the neural training did not converge.
This was most likely because the normalization of this coding diminished the feature of each
input unit rather than increasing it. If the normalization was not performed, the unit value range
was 100 great (256 levels) to learn for the neural network. Therefore, a two dimensional array of
units with binary coding was used for the input layer. Because 8-bit Landsat TM data was used,
each of the eight units of a column in the input layer referred to one bit and each of the units in
a row represented one spectral channel. Therefore, the two dimensional array was seven units in
row length by eight units in column length (i.e. 7 x 8 units) for Landsat TM data. Since each
image had different spectral features, each neural network had its own representation for the

hidden layer.
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Thermometer coding was adopted for the output layer. Units in this layer were designed
in one dimension, and the number of its units equals the number of spectral classes. For exam-
ple, class 5 out of 10 possible categories would be represented as 1 in the first five nodes and 0

in the remaining five nodes (¢.g. 5=1111100000).

The full connection was applied to the linkages of layers input to hidden and layers hid-
den 10 output. This indicates that each unit in a layer was connected with every unit in adjacent
layers. There were no connections between nodes located in a common layer. Although this
type of connection takes a lot of memory and computation, it makes the design of the network

simple, the weight-adjustment easy, and the training able to be monitored and adjusted.

OO e O 0 Output-layer

unlnulunnunnnnuunnu@ H‘d&ﬂ-llw

Input-layer

Figure 12. Three-layer back-propagation neural network.
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3.4.3 Neural Network Configurations

The three-layer back-propagation configuration for the neural network classification was
used, as shown in Figure 12. Representations for each input layer, hidden layer, and output layer
for all neural networks used are listed in Table 7. As seen in Table 7, there are seven images
listed. In addition to the two original Landsat TM images (March 23, 1987 and April 26, 1988),
there were another five images which were transformed and generated from the original images.
They will be defined in later sections. The determination of representations for each input layer
was based on the definition in the last section. The representations for each hidden layer were
initialized with thirty units. After initial training, they were changed to arrive at the values
shown in Table 7. The rule for changing the initial number of units in a hidden layer was based
on the two monitoring parameters set up in NASA NETS. They are the Max and RMS errors. A
Max error was the maximum among the differences between each actual output and desired out-
put on the output layer, whereas a RMS error referred to the root mean square of the differences.
If Max and RMS errors decreased very slow or did not decrease, increasing the number of hid-
den layer units was required; if Max errors decreased during 25 or 30 cycles, and then went up
again and stayed at a very high error value, decreasing the number of hidden layer units was
required. The reason for assigning seven units for every output layer will be discussed in a later

section as will information class creation.
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Table 7. Representations for the neural network classifiers.

Image description Input layer Hidden layer Output layer
(units) (units) (units)

Landsat TM data 7 x 8 array 35 7
March 23, 1987

PC* transformed data 7 x 8 array 25 7
March 23, 1987

Landsat TM data 7 x 8 armay 35 7
April 26, 1988

PC* transformed data 7 % 8 array 35 7
April 26, 1988

SR® transformed data 7 x 8 array 21 7
March 23, 1987

Landsat TM Plus® data 8 x 8 array 35 7
March 23, 1987

Landsat TM Plus® data 8 x 8 array 35 7
April 26, 1988

*Principal components.
bSpectral ratioing.
°GIS-enhanced Landsat TM data.

3.4.4 NASA NETS 2.0

The neural network simulator tool used was NASA NETS (Baffes, 1989). It can be run
on a variety of machines including SUN workstations and PCs. The simulator’s primary func-
tions are twofold: 1) to provide a flexible system for manipulating a variety of neural network
configurations using the generalized delta back propagation leaming algorithm; and 2) to pro-
vide the general user community a means for learning about neural network technology without
the need for specialized hardware (Baffes, 1989). The NETS software used for image

classification was run on SUN SPARC workstations.

The interface routines, including those for converting an ERDAS BIL file (ERDAS,

1988) to an ASCII file, subsetting an image, encoding and decoding an image as required by
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NETS, and computing classification accuracy, were written to make it possible for NETS to be
used for image classification. NETS was incorporated with MacLARSYS" allowing it to be util-
ized more effectively because MacLARSYS provides a LIST function that can list training and
testing data or a portion of or an entire image in ASCII format. The results of classification can
be easily imported back into MacLARSYS for display. These routines for interfacing NETS

with MacLARSYS are listed in Appendix C.

3.5 Method for Estimating Residue Percentage

3.5.1 Preprocessing of Data

Although both TM data sets were collected in early Spring (March 23, 1987 and April 26,
1988), there were differences among them. In March, the weather is still cool, tillage-planting
practices have not yet started and there are no or few leaves growing on plants. In contrast, the
weather has changed significantly in late April, some fields have been tilled and planted, and
young leaves are growing on trees. The spectral response patterns were different in each of the
seven Landsat TM wavelength bands for the images, but the tendency of reflectance changes
followed a similar pattemn. The spectral ranges for different wavelengths of all seven Landsat
TM bands are listed in Table 8. The color composition of band 4 (near infrared) for red, band 3
(red) for green, and band 5 (middle infrared) for blue was adopted for the data sets to enhance
* MacLARSYS is an image processing software package running on the Macintosh computer

and has been developing by the Laboratory for Application of Remote Sensing (LARS) at
Purdue University, West Lafayette, Indiana.



43

the visualization of crop residue classes when the image was displayed.

Table 8. The characteristics of Landsat TM data.

Wavelength Nominal spectral Spatial
Band (um) location resolution (m)
1 0.45-0.52 Blue 30
2 0.52 - 0.60 Green 30
3 0.63 - 0.69 Red 30
4 0.76 - 0.90 Near-infrared 30
5 1.55-1.75 Mid-infrared 30
6* 2.08-2.35 Mid-infrared 30
7™ 104-125 Thermal infrared 120

*Bands 6 and 7 were switched when the original TM images were down-loaded from tape.

Information Class Creation

According to the ground truth data, there were water, trees, bare soil (fallow), crop resi-
dues, and five types of pasture/grass including red clover, alfalfa, oats, CRP' and ACR’. Since
the focus of this research was on crop residues, the decision-making tree analysis method of
systems engineering was adopted to construct the decision-making tree of the information
classes. In order to look at how many branches, nodes, and leaves existed for the tree, a top-
down analysis was applied to the ground truth data. Two hierarchical decision trees of the infor-
mation classes resulted as shown in Figures 13 and 14 corresponding to the two TM data sets.
Then a bottom-up analysis was employed to produce the information classes from each tree.
Consequently, two sets of training classes were generated with seven training classes each as
listed in Figures 13 and 14. Therefore, there would be seven units in an output layer of each
neural network used for classification.

1 Conservation Reserve Program which could refer to weeds or grasses.
2 Agriculture Crop Reserve which could refer to different types of grasses.
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Figure 13. Creation of the information classes for 1987.



45

Information class decislon tree
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Figure 14. Creation of the information classes for 1988.
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Principal Components

Principal components transformation was performed to enhance images with maximum
contrast and to make images visually more interpretable. Although principal components
transformation does not enhance separability for the traditional classification techniques as
reviewed earlier, it was employed to investigate whether neural network classification tech-
niques perform differently after such a transformation. A neural classifier treated the
transformed data, which was uncorrelated after transformation in the multispectral vector space,

as a new image and determined the features from the transformed training data.

Principal components transformation was applied to the two Landsat TM data sets. Con-
sidering the awareness of the lower-order principal components reviewed earlier and the

configuration of the neural networks, all seven components were utilized in this study.

Spectral Ratioing

As reviewed in Chapter 2, an enhanced image can be generated from the division of digi-
tal values in one spectral band by the corresponding values in another band. These ratios clearly
portray the variations in the slopes of the spectral reflectance curves between the two bands

involved.

In this research, the difference between crop residues and bare soil was greater in band 5
than in band 6 for March data. Therefore, spectral ratioing was applied for crop residue discrim-
ination. The function of this computing procedure was a modification of the Normalized Differ-
ence Vegetation Index (NDVI) (Mather, 1987). It can be called the Normalized Difference Resi-

due Index (NDRI) and was defined as:



47

XX 255. [3.9]

NDRI =
X + Xs

The symbols X5 and X, refer to the values of Landsat TM bands 5 and 6, respectively. The
transformed data were used to replace the thermal infrared band of data (band 7) for the March

23, 1987 scene.

3.5.2 Classification Using Traditional Methods

With the aid of displaying an image given the color composition defined previously,
training fields were selected interactively for section 9. In addition to portions of known fields,
extra training data were chosen from the other three sections (sections 3, 4 and 10) based on the
spectral features of fields. The training data for class river were obtained by statistical cluster-
ing.

Two traditional methods, Maximum Likelihood and L1 Minimum Distance (reviewed in

Chapter 2), were used to classify images. The same procedure was applied to all image data.

3.5.3 Classification Using Neural Networks

Neural network training was different from the training approach for traditional
classification. However, the training data sets were the same in both cases to allow comparisons
of classification results. The training data sets used for traditional methods were first exported
from MacLARSYS. Then the digital values corresponding to each training field were binary-

coded, the class numbers matching each training field were thermometer-coded, and they were
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coupled as input-output pairs to be used as inputs for the training of the neural network

classifier,

3.5.4 Classification with the Aid of a GIS Layer

Motivated by the successful classification of Landsat MSS data merged with geographic
data (Benediktsson et al., 1990a) and the performance of neural networks integrated with GIS
(Amold et al., 1990), a GIS layer was incorporated into the neuro-classification technique. The
GIS layer was the ownership map associated with the four sections studied. It was digitized
using ERDAS and then added as an eighth band to the original Landsat TM image data, as illus-

trated in Figure 15. The eight-band merged data were called Landsat TM Plus.

band 8

Ownership

Figire 15. Creation of Landsat TM Plus data.
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The reasons of chosing the ownership layer were that a) the boundaries representing dif-
ferent owners matched training field boundaries, b) an enclosed region stood for one owner, ¢)
one area was coded with a digital number (i.e. there existed the same reflectance inside one
area), and d) the classification results may be improved because of the unique digital number

inside a polygon.

For these types of data, Maximum Likelihood sometimes does not work because one
spectral class may only exist inside one region. This means that the class exhibits the same digi-
tal value in the eighth band and thereby there is no variance in the band. Consequently, ele-
ments related to this band in the corresponding covariance matrix are zero and the determinant
for the covariance matrix is zero. Therefore, the covariance matrix cannot be inverted and
thereby Maximum Likelihood classification cannot be performed in this case. However, this is
not a problem for a neural classifier because it does not address the second order statistic, vari-
ance. Minimum Distance can also be applied to the classification of these types of data because

it considers only the first order statistic, mean.

Neural networks and L1 Minimum Distance were used for the classifications of this
merged eight-band data. All procedures involved were similar to those adopted in the

classifications of seven-band data.
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4. RESULTS AND DISCUSSION

4.1 Spectral Behavior of Crop Residues

Crop residue cover changes as a result of the season’s changing from Winter to Spring,
i.e., the temperature goes up and earth becomes defrosted in that time period. In Indiana, plant-
ing usually starts in April. Reflectance differences between crop residues and other biomass and
a river were included in this study. Spectral variations caused by the changing season are dis-

cussed in the following sections.

4.1.1 Discrimination of Crop Residue Cover in March, 1987

Figure 16 shows the spectral curves for the selected six-band Landsat TM data’ of March
23, 1987, which were plotted based on the training class means in each of the six wavelength
bands. Each of them corresponds to one category in the study sections. There are three curves
indicating crop residues which are classes corn/50%, corn/83% and soybeans/64%. These crop

residue classes were previously generated from the corresponding ground truth data.

* Band 7, thermal infrared band, is not included in Figure 16 because of its 120m resolution.
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It can be seen in Figure 16 that both intra-discrimination of crop residues, including
inside one category like corn, and inter-discrimination of biomass categories were distinguish-
able, especially in the first middle infrared wavelength, 1.55 to 1.75 um. Class corn/50% had
the highest reflectance in this wavelength because it held less moisture than any other class.
Class river had the lowest reflectance in every band as water should exhibit. Classes corn/83%
and soybeans/64% ranked in the middle but the former had a smaller digital number than the
latter in the middle infrared wavelength. Class forest showed the second lowest reflectance in
every band because leaves were not on trees at that time. Classes pasture/grass and bare soil
had lower reflectance values than class corn/50% and higher reflectance than any other class,

probably because they were moderately dry.

Moreover, class corn/50% had higher reflectance in every wavelength band than class
corn/83%. The reason is that class corn/50% has a lower density than class corn/83%, and thus,
it has less moisture content and absorbs less electromagnetic energy. In other words, class
corn/50% radiates more energy than class corn/83%. Therefore, it can be concluded that the
lower the residue percentage, the higher the reflectance and the greater the digital number. This
is similar to soil spectral characteristics changing along with moisture content as reviewed pre-

viously.

4.1.2 Discrimination of Crop Residue Cover in April, 1988

The spectral characteristics of the crop residues and bare soil had changed markedly in
April as seen in Figure 17. All crop residue classes could be separated from class bare soil only

in the first middle infrared wavelength. Class corn/51% had higher reflectance than the compar-



54

able class, corn/50% in March, 1987. Similarly, class bare soil had higher reflectance values in
April, 1988 than in March, 1987. The reasons are that the moisture content for March, 1987
data was higher than that of April, 1988 and crop residues have lower density than bare soil.
However, the decrease of soil moisture content is usually slower than that of crop residues since
crop residues reside above the land surface and their moisture contents are more directly
influenced by weather. The difference between the two com residue classes is very small, most
likely because the residue percentage of class corn/unknown was close to that of class
corn/51%. Class soybeans/74% had a smaller digital number than the comn residue classes
because it had a higher density of residue coverage. Moreover, each crop residue class and the
bare soil class had apparent increases of their individual digital numbers in every spectral
wavelength band because of dryer conditions and higher solar angle in April, especially their
digital values in the first middle infrared wavelength that were greater than 150 as compared to
less than this value in March as shown in Figure 16. Class pasture/grass had a similar trend in
the near infrared wavelength due to chlorophyll in young grass leave cells. However, classes
river and forest had the first and second lowest reflectance in every wavelength band even

though most trees had buds or young leaves in April.

4.2 Evaluation of Classification for the Original Data

The classification results for both training and testing data for March 23, 1987 and April,
1988 are shown in Figures 18 through 21. These training and testing data were selected from the
two original images without any transformation. The discussion of the classification perfor-

mances for the March and April data follows.
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4.2.1 Performance for March Data

As seen in Figure 18, the neural classifier (NN) obtained the highest accuracy, whereas
L1 Minimum Distance (L1) had the lowest accuracy among the three classifiers compared for
the training data set. Although Maximum Likelihood (ML) did not have as high an accuracy as
NN, it gave more than 95% accuracy for both individual classes and the entire training data set.
The reason for the 100% accuracy of the training data set for NN is that NN was able to com-
pletely leamn the training data set. Comparable performances were obtained for each of the other

training data sets which will be discussed in latter sections

The classifiers performed differently for the testing data as shown in Figure 19. The rela-
tive performances for NN and ML are switched with each other. ML achieved 90% or better
accuracy for each class and 96% accuracy for the entire testing data set, whereas the NN's
lowest accuracy was 81% for the soybean residue class and 92% accuracy for the entire testing
data set. L1 obtained 70% accuracy for both the soybean residue class and the entire testing data
set which was not as good as ML and NN classifiers. Because the class pasture/grass was a
mixture of several types of pasture and grass, it had variable spectral features and L1 had a 67%
classification error (accuracy: 33%) for this class due to its consideration of first order statistics

alone.
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One confusion matrix for each classifier was produced from the classification of the test-
ing data, and they are listed in Tables 9, 10 and 11. The percentages listed in the tables
represent the proportion of ground truth pixels, in each case, correctly and incorrectly labeled
by the classifier. The numbers without percentages beside them indicate that their correspond-
ing percentages were less than 0.5%. In each table, columns refer to errors of omission
corresponding to those pixels belonging to the class of interest that the classifier has failed to
reconize; rows refer to errors of commission corresponding to pixels from other classes that the
classifier has labeled as belonging to the class of interest (Richards, 1989). For example, the
value located in column 5 and row 1 in Table 9 indicates that 6 pixels belonging to class soybe-
ans/64% have failed to be recognized by L1. In other words, 10% of the class soybeans/64%
has been mislabeled by L1 to corn/50%. For the confusion tables (including those shown in
later sections), ground truth classes river and bare soil are not included because adequate
numbers of pixels could not be selected for training, and the name of the class pasture/grass

was shortened to pasture.

As seen in Tables 9, 10 and 11, the classification confusion between the crop residue
classes and the bare soil class is 5% for class soybeans/64% for L1, 1% for class corn/50% for
ML and 3% for soybeans/64% for NN. In addition, confusion exists among crop residue classes.
The maximum confusion is 10% (class soybeans/64%) for L1, 3% (class corn/83%) for ML and

18% (class corn/83%) for NN.
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Table 9. Confusion matrix for the March, 1987 testing data classified using L1.

Ground truth classes Total

corm/so% com/s3%  forest  pasture  soybeans/s4%

corm/50% 721(85%) 0 0 87(14%) 6(10%) 814
™ com/83% 47(6%) 183(95%) 12(4%) 9(1%) 2(3%) 253
forest 0 2(1%) 244(88%) 9(1%) 0 255
classes pasture 32(4%) O 0 199(33%) 8(13%) 239
river 0 0 19(7%) O 0 19
soybeans/64% |45(5%) 8(4%) 1 215(36%) 44(70%) 313
bare soil 3 0 0 85(14%) 3(5%) 91

Number of ground
848 193 276 604 63 1984

truth pixels

Table 10. Confusion matrix for the March, 1987 testing data classified using ML.

Ground truth classes Total
com/s0% com/s3%  forest pasture  soybeans/s4%
com/50% 838(99%) 6(3%) 0 1 0 845
™ com/83% 4 18797%) 0 0 0 191
forest 0 0 269(97%) 3(1%) 0 272
classes pasture 0 0 7(3%) 554(90%) 0 551
river 0 0 0 0 0 0
soybeans/64% |0 0 0 21(3%) 63(100%) 84
bare soil 6(1%) 0 0 356%) O 41
Number of ground
848 193 276 604 63 1984
truth pixels
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Table 11. Confusion matrix for the March, 1987 testing data classified using NN.

Ground truth classes Total
corn/so% com/si%  forest pasture  soybeans/64%
com/50% 833(98%) 34(18%) 4(1%) 23(4%) 12%) 895
™ com/83% 8(1%) 159(82%) 5(2%) 132%) 3(5%) 188
forest 1 0 259(%4%) 132%) O 273
classes pasture 4 0 7(3%) 513(85%) 5(8%) 529
river 0 0 1 112%) 1(2%) 13
soybeans/64% |2 0 0 26(4%) S51(81%) 79
bare soil 0 0 0 5(1%) 2(3%) 7
Number of ground
848 193 276 604 63 1984
truth pixels

Table 12. Confusion matrix for the April, 1988 testing data classified using L1.

Ground truth classes Total

com/s1% comjunknown forest pasture soybeans/74%

com/51% 489(57%) 0 0 0 23(23%) 512
™ com/funknown|65(8%) 183(77%) 0 0 0 211
forest 0 0 259(92%) 187(37%) O 446
iclasses pasture 5(1%) 0 0 311(62%) 2(2%) 318
river 0 0 24(8%) 3(1%) O 27
soybeans/74%|236(27%) 2(1%) 0 0 39(40%) 277
bare soil 69(8%) 42(22%) 0 3(1%) 34(35%) 148

[Number of ground
864 190 283 504 98 1939

truth  pixels




Table 13. Confusion matrix for the April, 1988 testing data classified using ML.

Ground truth classes Total

com/s1% com/unknown forest  pasture  soybeans/74%

corn/51% 637(74%) 10(5%) 0 0 20(20%) 667
™™  comn/unknown|0 177(93%) 0 0 0 177
forest 0 0 278(98%) 1 0 279
classes pasture 5(1%) 32%) 41%)  503(100%)0 520
river 0 0 1 0 0 1
soybeans/74%|220(25%) 0 0 0 73(74%) 293
bare soil 2 0 0 0 0 2

Number of ground
864 190 283 504 98 1939

truth  pixels

Table 14. Confusion matrix for the April, 1988 testing data classified using NN.

Ground truth classes Total

com/s1% comfunknown forest pasture soybeans/74%

com/51% 704(81%) 34(18%) 72%) 1 45(46%) 792
™ com/unknown|23(3%) 146(77%) 16(6%) 12Q2%) 4(4%) 201
forest 7(1%) O 226(80%) 91(18%) 1(1%) 325
classes pasture 12(1%) 7(4%) 22(8%) 382(76%) 11(11%) 434
river 1 0 12(4%) 102%) O 23
soybeans/74%(113(13%) 2(1%) 0 6(1%) 37(38%) 158
bare soil 4 0 0 2 0 6

Number of ground
864 190 283 504 98 1939
- fruth  pixels
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4.2.2 Performance for April, 1988 Data

Figures 20 and 21 illustrate classification results obtained by using L1, ML, and NN for
the training and testing data. As shown in Figure 20, these three classifiers showed a similar ten-
dency to that of the March, 1987 training data, i.e. NN obtained perfect accuracy, ML 96%
accuracy and L1 66% accuracy. L1 dropped seven percent compared to 73% for the March,
1987 training data. This is because the differences of reflectance among the crop residue classes
and between the crop residue classes and the bare soil class for the April, 1988 data were less

than those for the March, 1987 data, as described earlier.

Although these three classifiers had the same tendency of performance for the testing data
as they did for the March, 1987 testing data, NN and L1 obtained less than 50 percent accuracy
for the soybean residue class and the overall testing accuracy for all three classifiers as a whole
decreased 10 percent on average compared to that for the March testing data. ML, as it did for
the March data, performed with the highest accuracy. Confusion matrices were also generated
for the April, 1988 testing data, and are listed in Tables 12, 13 and 14 corresponding to
classifiers L1, ML, and NN. From these tables, the maximum confusion among crop residue
classes is 27% (class corn/51%) for L1, 25% (class corn/51%) for ML and 46% (class soybe-
ans/74%) for NN, and the confusion between crop residues and bare soil is 8% from class
corn/51%, 22% from class corn/unknown and 35% from class soybeans/74% for L1. This type
of confusion was less than 0.5% for ML and NN. Therefore, the confusions among the crop
residue classes and between the crop residue classes and the bare soil class are much greater
than those for the March, 1987 testing data. The reason is the same as that for the April, 1988

training data mentioned above.
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4.3 Evaluation of Classification for the Transformed Data

Two types of transformations, principal components and spectral ratioing, were per-
formed to enhance the images. Principal components transformation was applied to both March
1987 and April, 1988 data whereas spectral ratioing transformation only to March, 1987 data.
For the following descriptions, the three images were called PC March and PC April
corresponding to the original March and April data transformed by principal components and
SR March corresponding to the original March data transformed by spectral ratioing. The
classification results for training and testing data from these transformed images are discussed

in the following sections.

4.3.1 Performance for PC March, 1987 Data

As seen in Figure 22, the three classifiers had classification results similar to those for the
untransformed March data, i.e., the order of performance from best to worst was NN, ML and
L1 for the training data set. For the testing data, the order of performance changed as shown in
Figure 23. This also happened for the March testing data. ML presented 96% or better accuracy
for the crop residue classes and 97% accuracy for the entire testing data set. L1 had an 82%
accuracy for the entire testing data set. NN performed at 81% accuracy for the soybean residue
class, 91% or better for the com residue classes, and 91% for the entire training data set. The
confusion matrices for the testing data are listed in Tables 15, 16 and 17. There was no confu-
sion between crop residues and bare soil for any of the classifiers. The maximum confusion
among crop residue classes is 12% (from com/50%) for L1, 2% (from com/50%) for ML and

9% (from class com/83%) for NN. Therefore, the testing classification result for the class
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corn/83% was improved by applying NN to the PC March, 1987 data. This indicates that NN

treated the PC transformed data as a new data set.
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Table 15. Confusion matrix for the PC March, 1987 testing data classified using L1,

Ground truth classes Total
com/s0% com/s3%  forest pasture  soybeans/s4%
comy/50% 782(85%) 1(1%) 0 102%) 5(6%) 798
™ com/83% 111(12%) 139(99%) 1 4(1%) 22%) 257
forest 0 0 300(95%) 3(1%) 0 303
classes pasture 11(0%) O 3(1%) 301(63%) O 315
river 0 0 9(3%) 0 0 9
soybeans/64% | 182%) 1(1%) 2(1%) 52(11%) 83(92%) 156
bare soil 0 0 0 109(23%) 0 109
Number of ground
922 141 315 479 90 1947

truth pixels

Table 16. Confusion matrix for the PC March, 1987 testing data classified using ML,

Ground truth classes Total
corn/so% com/six  forest pasture  soybeans/e4%
com/50% 892(97%) 2(1%) 0 0 0 894
™ com/83% 212%) 139(96%) O 0 0 160
forest 0 0 306(97%) 1 0 307
classes pasture 1 0 9(3%) 467(97%) 0 477
river 0 0 0 0 0 0
soybeans/64% | 8(1%) 0 0 5(1%) 90(100%) 103
bare soil 0 0 0 6(1%) 0 6
Number of ground
922 141 315 479 90 1947

truth pixels




66

Table 17. Confusion matrix for the PC March, 1987 testing data classified using NN.

Ground truth classes Total

com/so% com/s3%  forest  pasture  soybeans/ss%

com/50% 900(98%) 12(9%) 4(1%) 133%) 2(2%) 931
™ com/83% 192%) 129091%) 3(1%) 0 2(2%) 153
forest 1 0 300095%) 16(3%) 5(6%) 322
classes pasture 1 0 6(2%) 383(80%) 8(9%) 389
river 1 0 2(1%) 5(1%) 0 8
soybeans/64% (0 0 0 12(10%) 73(81%) 123
bare soil 0 0 0 123%) O 12
Number of ground
922 141 315 479 90 1947

truth pixels

4.3.2 Performance for PC April, 1988 Data

Figures 24 and 25 show the classification results obtained by using L1, ML and NN for
the training and test data. As seen in Figure 24, both ML and NN were more than 90 percent
accurate for each training class, whereas L1 was 73% accurate for the entire training data set
(66% for class corn 51%, 99% for class corn/unknown and 86% for class soybeans 74%). The
testing accuracies for L1, ML and NN were 78%, 88% and 83%, respectively. However, L1 and
NN only obtained about 51% accuracy for class soybeans 74%. The confusion matrices are
listed in Tables 18, 19 and 20. From these tables, the confusion between crop residues and bare
soil is 5% for class corn/51%, 7% for class corn/unknown and 11% for class soybeans/74% for
L1 classification. There is little confusion for ML and NN classifiers. However, confusion
among crop residue classes still exists. The maximum confusion percentages for L1, ML and

NN are 35% for class soybeans/74%, 15% for class corn/51% and 36% for class soybeans/74%,
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respectively. Again, the maximum confusion percentage was decreased 10% by applying NN to

the PC transformed data set. The confusions among the crop residue classes for the April, 1988

PC data were greater than those for the March, 1987 PC data. This indicates that the April,

1988 PC data was more difficult to classify than the March, 1987 PC data.

Table 18. Confusion matrix for the PC April, 1988 testing data classified using L1.

Ground truth classes Total
com/si% comfunknown forest pasture soybeans/74%
com/51% 589(71%) 0 0 0 47(35%) 636
™ com/unknown 115(93%) 0 0 0 186
forest 125(84%) 73(12%) 1(1%) 199
classes pasture 1(1%)  546(88%) 2(1%) 549
river 20(14%) O 0 20
soybeans/74%(120(15%) 0 0 0 70(52%) 190
bare soil 2(1%) 1 15(11%) 71
Number of ground
148 620 135 1851
truth  pixels




Table 19. Confusion matrix for the PC April, 1988 testing data classified using ML.

68

truth  pixels

Ground truth classes Total
com/si% com/unknown forest pasture soybeans/74%
com/51% 692(84%) 7(6%) 0 0 16(12%) 715
™ com/funknown|2 106(85%) 0 0 0 108
forest 0 0 117(79%) 6(1%) O 123
classes pasture 4 11(9%) 12(8%) 614(99%) 13(10%) 654
river 0 0 32%) O 0 3
soybeans/74%(123(15%) 0 0 0 105(78%) 228
bare soil 3 0 16(11%) 0 1(1%) 20
INumber of ground
824 124 148 620 135 1851

Table 20. Confusion matrix for the PC April, 1988 testing data classified using NN.

truth  pixels

Ground truth classes Total
com/s1% com/unknown forest pasture soybeans/74%
com/51% 692(84%) 19(15%) 0 4(1%) 48(36%) 763
™ com/unknown|38(5%) 103(83%) 2(1%) 3 2(1%) 148
forest 3 22%) 138(93%) 72(12%) 4(3%) 219
classes pasture 9(1%) 0 7(5%)  536(86%) 12(9%) 564
river 0 1(1%) 2 0 0 3
soybeans/74%|78(9%) O 0 3 69(51%) 150
bare soil 4 0 0 0 0 4
INumber of ground
824 124 148 620 135 1851
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Figure 24. Training performance for the PC April, 1988 data.
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Figure 25. Testing performance for the PC April, 1988 data.



4.3.3 Performance for SR March, 1987 Data

70

As seen in Figure 26, L1, ML and NN obtained 82%, 98% and 100% accuracies for the

training data, respectively. This coincided with the performances of these classifiers for the

March and PC March training data. However, the testing accuracies of the SR March data, as

shown in Figure 27, were less than those of the March and PC March data for ML and NN

whereas the testing accuracy for the SR March data (87%) was higher than the March and PC

March data for L1 classification. The confusion matrices corresponding to the three classifiers

are listed in Tables 21, 22 and 23. There is almost no confusion between crop residues and bare

soil as shown in these tables. The confusion among the crop residue classes has maximums of

11% (class corn/S0%) for L1, 4% (class corn/83%) for ML and 29% (class corn/83%) for NN.

Table 21. Confusion matrix for the SR March, 1987 testing data classified using L1.

truth pixels

Ground truth classes Total
com/so% com/s3%  forest  pasture  soybeans/e4%
com/50% 839(86%) 1(1%) 0 3(1%) 3(3%) 846
™ com/83% 108(11%) 112(99%) O 0 1(1%) 221
forest 0 0 188(87%) 7(1%) 1(1%) 196
classes pasture 4 0 8(4%) 516(86%) 6(6%) 534
river 0 0 9(3%) 0 0 25
soybeans/64% |202%) O 0 22(1%) 81(87%) 123
bare soil 0 0 0 508%) 1(1%) 51
Number of ground
971 113 217 602 93 1996
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Table 22. Confusion matrix for the SR March, 1987 testing data classified using ML.

Ground truth classes Total
com/so% com/s3%  forest pasture  soybeans/s4%
corm/50% 874(90%) 4(4%) 0 1 0 879
™ com/83% 7(1%) 109(96%) 0 0 0 116
forest 0 0 193(89%) 2 0 195
classes pasture 61(6%) O 11(5%) 506(84%) 2(2%) 580
river 0 0 13(6%) 5(1%) 0 18
soybeans/64% |28(3%) O 0 6(1%) 91(98%) 125
bare soil 1 0 0 82(14%) O 83
Number of ground
971 113 217 602 93 1996

truth pixels

Table 23. Confusion matrix for the SR March, 1987 testing data classified using NN.

Ground truth classes Total
com/50% com/s3s  forest pasture  soybeans/64%
corn/50% 880(91%) 33(29%) 2(1%) 4(1%) 3(3%) 922
™ com/83% 27(3%) 80(71%) 1 1 2(2%) 111
forest 4 0 137(63%) 9(1%) 0 150
classes pasture 44(5%) O 56(63%) 558(93%) 30(32%) 688
river 3 0 21(10%) 132%) O 37
soybeans/64% [ 13(1%) O 0 112%) 57(61%) 81
bare soil 0 0 0 6(1%) 1 7
Number of ground
971 113 217 602 93 1996

truth pixels
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Figure 26. Training performance for the SR March, 1987 data.
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Figure 27. Testing performance for the SR March, 1987 data.
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4.4 Evaluation of GIS-Aided Classification

A GIS layer, ownership, was added to each of the original data as an eighth band of data
and called March Plus and April Plus data as described previously. The classification results for
both image dates are shown in Figures 28 through 31. The training and testing data were
selected from the two eight-band Landsat TM Plus images. The discussion related to the April

Plus data follows the explanation of the March Plus data.

As seen in Figure 28 and 29, ML is not included due to the inability to invert the covari-
ance matrix because of the river class. L1 obtained only 27% and 39% accuracies for the
March Plus training and testing data for class pasture/grass because of its consideration of only
the first order statistic as discussed earlier. However, NN still obtained a perfect classification as
before for the training data, and about 90% accuracy for individual classes of the testing data
and 95% for the entire testing data set. Confusion matrices corresponding to L1 and NN are
listed in Tables 24 and 25. It can be seen that L1 mis-classified 13% of class corn 50% into
class soybeans 64%, 5% of class corn 83% into class soybeans 64%, and 5% of class soybeans
64% into class corn 50%. Confusion between the crop residue classes still existed for L1. The
confusion between crop residues and bare soil was 3% for L1. However, there is none of this
type of confusion for the NN classification. The confusion among crop residue classes for NN is
12% for class corn/50% and 1% for class soybeans/64%. Therefore, the overall testing
classification accuracy was better by applying NN to the March Plus data set than to the March,
1987 data set, the PC March, 1987 data set and the SR March, 1987 data set, and the NN’s
classification accuracy for the entire March Plus testing data was similar to ML’s classification

accuracy for the March, 1987 testing data set.
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Figures 30 and 31 show the classification performance for the training and testing of
April Plus data. Again, ML could not be used for the same reason as for the March Plus data set.
L1 obtained 62% and 54% accuracies, while NN obtained 100% and 87% accuracies for the
training and testing data set, respectively. As seen in Tables 26 and 27, there is a certain amount
of confusion between the crop residue classes and bare soil for L1 but no confusion for NN,
Again, the overall testing classification accuracy was much better by applying NN to the April
Plus data set than to the April, 1988 data set and the PC April, 1988 data set, and the NN’s
classification accuracy for the entire April Plus testing data set was higher than ML's
classification accuracy for the April, 1988 testing data set. Therefore, the classification for the

April, 1988 data set was improved by applying NN to the GIS-enhanced April data set.

Table 24. Confusion matrix for the March Plus testing data classified using L1.

Ground truth classes Total

com/so% comn/s3%  forest pasture  soybeans/s4%

corn/50% 589(81%) 2(3%) O 2 4(5%) 597
™ com/83% 142%) 66(88%) 2(1%) 72%) 1(1%) 90
forest 0 2(3%) 133(92%) 2 0 137
classes pasture 4(1%) 1(1%) O 176(39%) 0O 181
river 0 0 10(7%) O 0 10
soybeans/64% |96(13%) 4(5%) O 167(37%) 78(94%) 345
bare soil 22(3%) O 0 95121%) © 117

Number of ground
725 75 145 449 83 1477
truth pixels
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Table 25. Confusion matrix for the March Plus testing data classified using NN.

Ground truth classes Total

com/so% com/s3%s  forest pasture  soybeans/64%

com/50% 723(100%) 9(12%) 1(1%) 174%) 1(1%) 751
™ com/83% 1 66(88%) 0 6(1%) 0 73
forest 1 0 144(99%) 5(1%) 1(1%) 151
classes pasture 0 0 0 401(89%) 5(6%) 406
river 0 0 0 1 1(1%) 2
soybeans/64% |0 0 0 123%) 75(90%) 87
bare soil 0 0 0 7(2%) 0 7
Number of ground
725 75 145 449 83 1477
truth pixels
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Figure 28. Training performance for the March Plus, 1987 data.
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Table 26. Confusion matrix for the April Plus testing data classified using L1.

truth  pixels

Ground truth classes
com/si% com/unknown forest pasture soybeans/74%
com/51% 383(62%) 0 0 4(1%) 68(53%)
™ com/unknown|92(15%) 70(66%) 0 85(20%) 3(2%)
forest 123(77%) 133(31%) 0
classes pasture 0 156(36%) 2(2%)
river 37(23%) 0O
soybeans/74%(142(23%) 0 0 102%) 53(42%)
bare soil 0 43(10%) 1(1%)
Number of ground
160 431
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Table 27. Confusion matrix for the April Plus testing data classified using NN.

Ground truth classes Total

com/s1% com/unknown forest  pasture soybeans/74%

com/S51% 582(94%) 12(11%) 0 34(8%) 4(3%) 632
™ com/unknown (24(4%) 83(78%) 0 348%) 3(3%) 144
forest 102%) 1(1%) 153(96%) 35(8%) 2(2%) 201
classes pasture 3 10(9%) 7(4%) 328(76%) 2(2%) 350
river 0 0 0 0 1(1%) 1
soybeans/74%]1 0 0 0 115(91%) 116
bare soil 0 0 0 0 0 0
Number of ground
620 106 160 431 127 1444
truth  pixels
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Figure 30. Training performance for the April Plus data.
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Figure 31. Testing performance for the April Plus data.

4.5 Comparison of the Classifiers for Different Data Sets

The three classifiers, L1, ML and NN, used for each type of data (the original data, the
principal components transformed data, the spectral ratioing transformed data and the original
data incorporating a GIS layer) obtained different classification results. Before the comparisons
are to be made, it is necessary to point out that L1 is not going to be included because of the
unsatisfactory results obtained with it as discussed in the previous sections. Therefore, the
classifiers to be compared are ML and NN. The comparison between ML and NN will be made

after comparisons of each classifier applied for all types of data are made.
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4.5.1 Comparison of ML Classifiers

Figure 32 illustrates the testing performance of the ML classifier for the three types of
March, 1987 data while Figure 33 shows the testing performance of the ML classifier for the
two types of April, 1988 data. In each legend of the figures, ML-1, ML-2 and ML-3 refer to the
ML used for the Landsat TM data, the PC transformed data and the SR transformed data,
respectively. ML is not shown in both Figure 32 and Figure 33 for the Landsat TM Plus data
because ML could not classify them, and ML-3 is not shown in Figure 33 because there was no

SR April, 1988 data.

As seen in Figures 32 and 33, the differences between the comparable classification accu-
racies which were obtained by applying ML to the original and PC data for the March and April
images, are 1% and 2% respectively. The differences are because of the slightly different train-
ing data. Therefore, using the original data would cost less because it does not required a
transformation, although principal components transformed images were visually more inter-
pretable than the original ones when displayed on a screen. However, the testing accuracies for
the April data decreased about ten percent each compared to 96% and 97% accuracy for the
March, 1987 data and the PC March, 1987 data. This indicates that the March images were
easier to classify than the April images whether principal components transformation was
applied or not. In addition, the accuracies for both individual classes and the entire testing data
set for the SR March, 1987 data are less than those for the other two types of data as shown in

Figure 32.
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4.5.2 Comparison of NN Classifiers

The testing NN classification results for all types of March and April data are depicted in
Figures 34 and 35. In each legend of the figures, NN-1, NN-2, NN-3 and NN refer to the NN
used for the Landsat TM data, the PC transformed data, the SR transformed data and the
Landsat TM Plus data, respectively. NN-3 is not listed in Figure 35 because there was no SR

April, 1988 data,

As shown in Figures 34 and 35, neuro-classification of Landsat TM Plus data (NN-4)
gave the highest accuracies for both the March and April images and a marked accuracy
increase for each crop residue class. Moreover, as reported earlier, there was no confusion
between the crop residue classes and the bare soil class for both the March and April Plus data.
This indicates that the separability for the crop residue classes and the bare soil class has been
increased after incorporating the GIS-layer, ownership, as the eighth band of data for each origi-
nal Landsat TM image, and thus classification results improved. Neuro-classification of PC
transformed data (NN-2) almost always presented better accuracies for each individual crop
residue class except for class corn/50% for March, 1987 data, and had a higher accuracy than
that of the original April, 1988 data. Neuro-classifications had almost the same accuracies for
the March, 1987 testing data set and the March Plus testing data set. Therefore, it can be con-
cluded that NN performed equally well or better for the principal components transformed
images. However, the testing accuracies related to the SR March, 1987 data are less than any

other in Figure 34.



82

O NN-1: March

O NN-2: PC March
B NN SR March
3 N4 March Plus

mey

T /////////////////V/// ,////
’?ffff/fffffffffflfﬂ

l&.?////////////// /////////// ////V/////

: "”””””””””‘

lf/////////?///ﬁ//,/// ///////V/ .////

& LT 210
& %te/uied

v B R e e s

1.0
0.8 1
0.4 1
0.2 ]
0.0

Y
©
(-3

Kseandoe uonesyisse|)

wrp/ovveqiss

sev breiniend

Figure 34. Testing performance of all NNs for March, 1987 data.

[ NNt Apet

O NN-2: PC Aprit
1 N4 Aprkt Plue

Loeandoe

uoies

Yssed

oy

%yl suseqies

oeviB/ainyend

1000}

umenyunuIes

%ig/uied

Figure 35. Testing performance of all NNs for April, 1988 data.



83

- . . CENEAERA. WM. . W . W V. ¥

March, 1987 data.

Figure 36. The best classifiers for

..//////////////////A .....

. T e — |

.//// NN e
S
.r///////////////////////V.
)

r////////////////////////

Figure 37. The best classifiers for April, 1988 data.



84

4.5.3 Comparison of the Best MLL and NN

Based on the results shown in the sections above, the best classifiers in this study for each
data set were selected and are illustrated in Figures 36 and 37. The best classifier for each origi-
nal Landsat TM image was ML, whereas the best classifier for each Landsat TM Plus image
generated by incorporating a GIS-layer was NN. As seen in Figures 36 and 37, NN presented
equal or better accuracies than ML for the entire testing data sets of March and April. Therefore,
if the image processing system was integrated with a GIS, it would be better to incorporate
some GIS layer like ownership field boundaries, into an original image and then to classify it
using a neural network classifier. In addition to the quantified performances, it can be seen in
Figures 38 and 39 that the classification results of the study area for NN showed less or similar
confusion among the crop residue classes, higher absolute classification accuracies for the crop
residue classes and the bare soil class than those for ML, and very clear crop residue fields and
their boundaries. In Figure 38, the NN’s result shows some noise inside soybean/74% and corn
83% fields as indicated in their confusion matrices shown earlier, whereas the ML’s result has
many pixels mis-classified into class bare soil in addition to a field confusion with class
corn/83% shown in the upper center portion of the figure. In Figure 39, the NN's result shows
some confusion as indicated in the corresponding confusion matrices, whereas the ML's result
has much more confusion among the crop residue classes, especially between class corn/51%
and class soybeans/74%, which was also shown earlier in their confusion matrices. In both
cases, the corresponding L1°s results obtained by classifying the original images were also dep-
icted to illustrate the large amount of mis-classification. For NN classification, if the image pro-
cessing system is not integrated with a GIS, it would require a certain amount of work merging

a GIS layer into the original satellite image before image classification.
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4.6 Evaluation of Neural Network Training

Figures 40 and 41 show the neural network training processes and results for all seven
images used. Table 28 lists the time spent for each neural network training. The corresponding
configurations of the seven neural classifiers were previously listed in Table 7. Although three
out of the seven images were produced by applying principal components and spectral ratioing
transformations to the original Landsat TM images, the neural classifiers recognized them as
new images as mentioned earlier. Therefore, there were a total of seven independent neuro-
classifications corresponding to the images used. As seen in Figures 40 and 41, and Table 28,
their training characteristics are different from one another, especially the maximum (Max)
errors shown in Figure 40. First, the convergence for each eight-band image (March Plus and
April Plus) starts at the very beginning of training whereas there is at least a thirty-cycle (half
hour or so) plateau period of training for each seven-band image (March, April, PC March, PC
April and SR March), and the trainings for both eight-band images arrive at the stable 10% error
in less than one hundred cycles as shown in Table 28. Incorporating a GIS-layer made the
neural training markedly faster compared to the trainings for all seven-band images except the
original March, 1987 data, and made the neural training more predictable because it had no pla-
teau period. Secondly, each seven-band April, 1988 data set took much longer to converge than
its corresponding March, 1987 data set most likely because of the closer spectral characteristics
for the crop residue classes and the bare soil class as described earlier. This shows again that the
seven-band April images, either original or transformed, were more difficult to classify than the
corresponding March images in this study. Thirdly, the PC data took a much longer time to
converge than the corresponding original data. In addition to the accuracy consideration dis-

cussed earlier, it is shown again that the original images cost much less in terms of training time
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than the PC images. Fourthly, all transformed data had a longer plateau training period, and the

PC April, 1988 data had about twice as long or more of a plateau period as the PC and SR

March, 1987 data. This indicates that the training for the transformed data, either principal com-

ponents or spectral ratioing, was more unpredictable than that for the original data. Finally, the

training time for the SR March, 1987 data was longer than that for the original March, 1987

data but shorter than that for the PC March, 1987 data.
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—% % PC April
SR March
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Figure 40. Max errors for all neural trainings.

For the Root Mean Squared (RMS) errors shown in Figure 41, the sharp drops start at the

very beginning of training the classifiers for the Landsat TM Plus data. All RMS errors
decreased relatively smoothly and there was no plateau period although there were a couple of

peak points for the PC April, 1988 training data.
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Figure 41. RMS errors for all neural trainings.
Table 28. Training behavior for the neural classifiers.
Data Training cycles Max RMS
(cycle = 65sec) error error
March 83 0.104 0.088
April 223 0.100 0.082
PC March 202 0.104 0.086
PC April 256 0.105 0.089
SR March 167 0.101 0.090
March Plus 94 0.104 0.084
April Plus 64 0.104 0.076

Maximum and RMS errors are two parameters to monitor and improve the training for
neural networks. The RMS errors always decreased if there were adequate hidden layer units.

In other words, if RMS errors did not decrease in the way shown in Figure 41, it would be



necessary to increase units for the corresponding hidden layer. However, too many units in a
hidden layer would cause training to fall into a local minimum and become static at an
undesired error. As seen in Figure 41, all RMS error curves dropped to less than 10% in about
fifty cycles. If the error was greater than this percentage, for example 15%, it indicated that the
leaming rate factor, n, was too large and needed to be reduced. For the maximum errors, if they
were unchanged within one hundred cycles, for example they were more than 89% at that time,
the momentum, ¢, needed to be decreased because it was too big to reach the minimum. In
summary, the adjustments for the learning rate factor, the momentum, and the number of units

in the hidden layer were tradeoffs.
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5. SUMMARY AND CONCLUSIONS

Landsat TM data for March 23, 1987 and April 26, 1988 with accompanying ground truth
data for the study area in Miami County, Indiana were used to determine crop residue type and
class. Three methods for image classification including Maximum Likelihood, L1 Minimum
Distance, and neural networks, which are an emerging artificial intelligence technique, were

utilized 1o investigate the best classifier for the estimation of crop residues.

Landsat TM data were able to determine crop residue type and class in a large area. This
remote sensing approach overcomes the problems of range and topography that traditional
methods of estimating crop residues have, and is suitable for ensuring USDA program compli-

ance.

The spectral characteristics among the crop residue classes and between the crop residue
classes and and the bare soil class and other biomass classes were investigated using the
Landsat TM scenes for the study area. Crop residue classes in the study area were separated
from one another and from the bare soil class and other biomass classes, and two types of crop
residue with four classes identified from each Landsat TM image. The lower the crop residue
cover percentage, the less the moisture content and the higher the reflectance. The reflectance
for crop residue classes was higher, and the differences among the crop residue classes and
between the crop residue classes and the bare soil class were lower in April, 1988 than in
March, 1987 because of the lower moisture content. Therefore, the crop residue classes were

less separable in April, 1988 than in March, 1987.



The neural network classifier obtained better accuracies for the GIS-enhanced Landsat
TM (Landsat TM Plus) data than the L1 Minimum Distance classifier, whereas the Maximum
Likelihood classifier was not able to classify them because of its consideration of inverting the
covariance matrix. However, the Maximum Likelihood classifier performed better
classifications for the original Landsat TM data than the L1 Minimum Distance classifier and
the neural network classifier. The L1 Minimum Distance classifier obtained worse accuracies

for the original Landsat TM data and the Landsat TM Plus data.

A GIS layer, ownership, was added to each original Landsat TM image as the eighth band
of data in an attempt to improve the classification results using the neural network back-
propagation classifier. The classification results obtained by using the neural classifier showed
clearer fields for crop residues and clear boundaries for these fields, less confusion among the
crop residue classes, and no confusion between the crop residue classes and the bare soil class,
compared to the results obtained by applying the Maximum Likelihood classifier to the original
seven-band Landsat TM image data. Moreover, Maximum Likelihood could not be used for the
generated eight-band data because the covariance matrices corresponding to each eight-band
image had zero value determinants, and thus, the covariance matrices could not be inverted and
thereby Maximum Likelihood could not be utilized. The minimum distance classifier did not
obtain satisfactory classification accuracies because it does not consider the second order statis-

tics, the covariances between image bands.

Principal components and spectral ratioing transformations were performed for the two
original Landsat TM data sets to investigate the performances of the neural network classifiers.
The neural network trainings for the transformed data sets took much longer than those for the
original data sets, and the testing accuracies obtained by applying the maximum likelihood

classifier and the neural classifier to the spectral ratioing transformed data were less than those
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for other types of data. Therefore, using the original data would be less costly because it does
not require a transformation However, the principal components and spectral ratioing
transformed images were visually more interpretable than the original ones when displayed on
screen, ard the neural classifier treated them as new data sets. In addition, the testing accuracies
obtained by applying the neural classifier to these transformed images were less than those for
the Maximum Likelihood classifier, but the corresponding training took longer times. There-

fore, it can be concluded that transformation was not needed for the two original data sets.

The neural training times for the GIS-enhanced Landsat TM data sets were less than the
times for other types of data including the original, and principal components and spectral ratio-
ing transformed data, except for the original March data. The training for each GIS-enhanced
eight-band data set converged at the very beginning of neural training whereas there was at least
a thirty-cycle (half hour or so) plateau period of maximum errors for each seven-band image.
The training for the seven-band April, 1988 data took much longer, and had a greater plateau
period of maximum errors than that for the seven-band March, 1987 data. Moreover, the train-
ing for the transformed seven-band data sets took a longer time, and had a greater plateau period
of maximum errors than that for the original seven-band data sets. Therefore, the neural
classifier applied to the eight-band data sets, which were generated by incorporating a GIS
layer, took the least time to converge to the desired error. However, neural training still required
50 cycles (more than 54 minutes) on SUN SPARC workstations. This was the major disadvan-
tage for the neural networks used for image classification. As new generations of computers

(faster and parallel processing computers) evolve, this problem will be overcome.

In the case of the neural classifiers, coding, including encoding and decoding, was impor-
tant for the neural networks’ convergence and the classification accuracies since neural net-

works know about nothing except numbers. Although decimal coding did not work for the



neuro-classifications, binary coding always performed well. Thermometer coding was appropri-

ate for an output layer since it increased the accuracy of classification.

A fully interconnected three-layer neural network, which contained input, hidden and out-
put layers, worked well for the neuro-classifications. However, it was necessary to scramble
input/output pairs in order to present inputs to it in a random fashion before starting to train the
neural network. This is required for back-propagation network theory to behave properly. Oth-

erwise, the neural network training converged very slowly, or did not converge at all.

In the neuro-classification of all types of data, including both seven-band and eight-band,
the initial learning rate, 1, was 0.30 or 0.35. When the maximum error decreased to 0.1, it was
changed to 0.7. Generally speaking, the higher the learning rate factor, the faster the neural net-
work will learn, but the more reckless the leaming and the greater the chances of the neural net-
work being unable to accomplish the overall desired result. The final momentum value, o, was
0.9 while its initial value was 0.6 or 0.65 depending on the oscillation of neural network train-

ing.
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6. RECOMMENDATIONS FOR FURTHER RESEARCH

Results in this study suggest that Landsat TM data can be used to estimate crop residue
coverage in a large area for which traditional methods of determining residues would not be
economical. Further research, including classifications of a series of images from late October
to late May of the next year, and exact date-matching and sound ground truth is essential to
investigate how crop residues change along with changing seasons in Indiana and most of the
Midwest. The influence of soils beneath crop residues would be considered in the case of lower
percent crop residue coverage. An atlas for crop residue spectral characteristics is needed for the
future real time monitoring and classification of crop residues. In addition, an interactive satel-
lite image processing linkage with GIS tools is needed in order to really integrate remote sens-
ing with GIS. This would make a spatial database easy to enrich and update, and the

classification of multitemporal data would be a daily routine.

In consideration of ground truth, acreage, yields, tillage and planting practices could be
input into a spatial database of the study area in forms of GIS layers, and then the residue cover-
age corresponding to the ground truth could be spatially calculated based on these layers of
information using Equation 3.1 listed in Chapter 3. A new layer for the initial residue coverage
in the spatial database could be created as a result of the calculation. The new layer could be
used for selection of training fields for image classification, or may be added to original satellite

images as a new band of data to assist with the classification of multitemporal data.
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Since the key point of successful neuro-classification is the representativeness and agree-
ment of its training data, it is necessary to develop an effective selection procedure appropriate
to it. Just as described above, map-based ground truth can be very helpful for selection of train-

ing data, and probably can make automatic selection of training data possible.

Incorporating other GIS layers of information, such as soil moisture, soil type, elevation,
slope and drainage, may improve classification of remotely sensed data to estimate crop residue
coverage and should be investigated. Also, neural network techniques should be added to the

integrated GIS system.

Reducing training time for neuro-classification could be another area of further research,
including unsupervised neuro-classification and neuro-classification with other neural network

leaming algorithms.
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Table 4. Ground truth survey form B.
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Table 5. Ground truth survey form C, 1986.
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Table 6. Ground truth survey form C, 1987.
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SHRT o0Ff A

SECTION

CROPPING HISTORY FOR FARMS IN SECTIONS SELECTED

Farmer's {(or operator's) name:

Farm locatlion:

K Gpo&

R > 19

/_3 N

4 a7

N

loen/

mw,, mewmw

/7,
/PR 23

:/L
NS

\K
NN

.
.
]
.
]
i
'
H
]
H
1
]
1
H
v

31 N
wv,u_«

Rearss
N

2y 17
my /¥
Hiteg,

]
'
]
3
.
.
.
’
»
.
1]
]
i

feet for each vear --

™~

A 333 J .

SN

1986)- 1987 - 1988 | Circle one

v

mF MaA%w

AEALA
Hus §5
Jub 55

S
|

[ N
o D et e e et s e e e e e e a4 S ee teme cmee em e me et e St e e e = Peeacnce en e et e et e s rE aa SE an s e fe me oo mn e oo aeoe
£~ o . °
[oppey . - » 0 & - . ® v
L4 1 [ -~ 0 - & o [ ] - ] 13 (3 = L3
v o v [ [ [ - LB X - - - -y .. . 0 - o . T
» L ~ » L - =7 R 40~ k3 € £~ w - 8> B B b 4 ~ @ =
-t & v VU = s w e x L = 3 ¥ o0 - @ 13 - .U - b (8] ™ - > " g~
" - 3 < — -t [ [ -] =0 Bt . L - [ ) o 2 [~} - -t U
Cw he - O vEew - U LoV OCR—m A0S Wud = Wos0U~@d O 0O w AO0® &
- - WD P W SL= A x L @0 LGLIv Ou=~ 0C 0> X UIOR 4 = @ - O | <0
[ T O - €€V + TV —a3 WMt D Q00 k= - - - 2 RZ bk € b ~ L MOSE®
o - a 8~ L] b L ] - CEC o0~ 0 b G = ® € - . [ ] -] - - 2] LDz ve e
o L ] . o -— D z « (&1 =z a - z - 0w - Q. w S e« (o] O w - - V2V
- - [-3 - [ el - - < [ 0 - ~
L L =z & [ - [-] o (-] [ ] -—

WAL PAGE IS
OF PGOR QUALITY

§

P
el d

$i5,0



109

WESis0& OF
4 Sccrion]

7

Gewe  Cofismore
7 OF NMORTyEAST

Vabdr /SE

¥

SOIL MANAGEMENT PHASE

1987/- 1983 §} Circle one
or_ench yYear --

=

FOR NASA SATELLITE RESEARCH PROJECT
-- Fill out ope_sheet

Table 9. Ground truth survey form D, 1987.
W

SECTI0v

CROPPING HISTORY FOR FARMS IN SECTIONS SELECTED

Farmer’'s lor operator's) name:

Cropping year [ 1986 -

A o0&

Farm location:

NERNNR

2

J o
I~ mm MMM FWW ~ uw /mwzmw JN

X

/2
27
Ay
7
Vv

:

/7R 21
a6
Soy fea
y;
J
v

N
~§

/f

K
v
I
L
HER
AO
No

b

MDD I X
X § 3
RIS mm

3

v
'

s}

N

e

7

W NRE
4 IS

£

MO

b N

B

&
2PR
2

€ — [y - 9

- . v o - . © -
™ " -~ U - ('Y . o - -t - n a P3 e »
¢ © av - - "L - - - a® o « O = 6 w W
2 [ » Lo - £ T o " LR X3 L - . o > » » I P 4 —m
§ v NU = we 3 v £ 3 PV =y I - ‘0 ¢ & O & @ 3 men~
3 < -~ — . ad o [ -1 F-] 3 . - - 0 e (0 3 (-] - Wt XD
z S I ) [ *an - L Ohme wOE WO wNg W O~ © B w Dos L4

-~ LWD = W M= O X £ ®0 La3wv O~ O0CE ©O5 X UXIOW & =« 9 =~ 0 PR
o 4 .- s &w [} T meR Nm - & 00 e — O - '} - 82 kL c - - e O~ 80
- . BE~8 0 = LuiFk @4 = EEC SEU— Sbo P P8 ~uf O O o = W DExece
¢ 4 9 me~Dd 2z & O x 2 s n z VOO PL HE e b D @B - = Ownzw
T 2 5 k- - ] ] ] 0 - -
o z = - [ a [~} (=] w -

ORIGINAL PAGE [s
OF POOR QUALITY



110

éf/.s MORE

Scerion Uafa /5E  wEsT S0 oF
HESST At SECT o8

A2,

=)

7

0.

88)) Circle one

9

G;f/{/

-

G

SOIL HANAGEMENT PHASE

Aer oF A

FOR NASA SATELLITE RESEARCH PROJECT

Table 10. Ground truth survey form D, 1988.

1986 - 1987 -

-- Fill out opng_sheet for
a4

CROPPING HMISTORY FOR FARMS IN SECTIONS SELECTED

Farmer's {or operator’s) name:

Farm location:
& Goo £
Cropping year (

-7%.::-----,.,{..,,_:- ................
M@ ﬁMnﬂM /Jv MM AmM W
......... /,M_

_yeer --

7
By 10

-

ANEN RN

<h
Y 4

<
7
/3
ﬁ:q 5(4 ‘/S

Il
]
.
‘
]
.
.
11
b
'
.
.
v
]
[l
‘.
Il
1}
.
H
'
4

boa s
o

o o

M .
.mn | ENACY N M_ b

- -

2Ry /0
%
Vi
N
Al
2

VL

\So

s —~ - ]

e g o+ - . v -

[ 3 ” - O - -9 - [ - — P -9 I3 c ®

v e " e - - "o - —-w . .v . 0 =~ ©o e =

2 ~ . bad £ 7 o " ® O - R} q T oo w . [ 2 [ ] v < - < -

& 1Y " u - L] w o b 3 ¢ £ - Voo - = pel -0 ) b 131 be - x " e

F < - et -~ [ L F-- I I [0 -] - ) ot b o k-] a < 13D

x » o - - . vemw - ov [ ] O Qe 08 e ey Wol @~ @ o -y » ao0e v
~ HWO ~ W ®hk~ & X £ §0 LRIV O~ OE 0> X UXO R & = O = O layg

¥ 0 - daw 1 U w3 B & 00 w0 - . 19 ew2 . ¢ e - N WO EE

- -3 L ) o - L\ @0 - [- w0 - 0 - 8 - [ ] -k £ ] o - - e vEevLs v

() . 0 D z - 3 (4] =z .a LR 3 o 0w - e - = -0 ™ [>] w [ — ouxTw

- o 9 b - - L. o L3 © - L od

L = 1S & = [N (-] a (-] " -

TY

ORIGINAL PAGE Is

OF POOR QUALY



111

O~

=

7T S/

&ERs

W™ Y Seciion

-

£

sa W ahlsons

o,
T0cr VNS5

SOIL MANAGEMENT PHASE

3/

FOR NASA SATELLITE RESEARCH PROJECT

)- 1987 - 1988 ) Clrcle one

cet _for esch yeer --

_"
pe
Oy

Table 11. Ground truth survey form E, 1986.
SEe

—

CROPP'ING IIISTORY FOR FARMS IN SECTIONS SELECTED
Croppling year ((1986

\5—[/() 6

7

-- Fill out ope_ah

a

Farmer's (or operator's) name:

Farm location:

A\

N

N Me@m

3.
<IN <

X .=
g

et it L gt
R

N NSNS
Q NERE
J 1]

I
Lol
A 1 - LY 0..//

X ~5
Soyg 88

O L . SO O SO N SO USU .m. NSy
_ O SN e ceam———
Q
~N

AL

28

_Ao

Q

24
I 7
€5

pN

,
1

h

Tonstrd

Lo/
4

'K ///‘.’(7—?3/;:

AN

Ary

3
NE
N =

/8
/348
CORN
7 a.//séd
/e
]

m 33

/4
ALK
i

.7
Mo
¥4
ARsS
VTN SE,

£~ [ ] w k-

“ e v x P . -
- L - u - [ - [ - e - a 11 e ©
v e K] - -~ L -~ —w ” . “ € = p €
E-] I = - £ v L] € 0= tes o 8 .- - . @ > " [ ] 3 e - € —=mw
[] ] L w U X ¢ = 3 e kg £ a O 3 Lo e x " Qe
3 < — - - O [P E20 Xmo . LW - 2 D oy 3 Q = -1 20
z [ 35 - ® ysm - o0 o0 O Cort we ~-0e - - Wo g~ € o & w ase L]

-~ LwD - ®w eL- A x & g0 “a3wv P 08 0> XTUIOL o = @ o o | &3O
ot ° . LI 1 T X Ny QO -0 -~ - ~ e W L 13 L) b~ .o a @
- -3 LN o - £ 0 @ - EE®EC e - 0 b ® - ¢ e - e L4 o - - b xezovce
v . [-] - D z =< Q = o 4w z 0 -~ o - = - [ =] © L] [ o] - cwuxwn
- o A~ el - o L) o -] - had
L z (5 Qe = Q. Q (=] e (-] -

OF POOR QUALITY

ORIGINAL PAGE IS



112

EAST S/OL
Y SceTron

1/ 5E

7

§A
SO« T K EST

Tohnt W Wilsod

7/3

7

FOR NASA SATELLITE RESEARCH PROJECT
SOIL MANAGEMENT PHASE

C7Tron

Table 12. Ground truth survey form E, 1987.
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Appendix B. Flown Aerial Photographs
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Figure 1. Photocopy A of flown aerial photograph for section 3.
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Section 4:
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Figure 2. Photocopy A of flown aerial photograph for section 4.
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Figure 3. Photocopy B of flown aerial photograph for section 4.
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Section 9:
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Figure 4. Photocopy A of flown aerial photograph for section 9, 1987.

FAGE IS

L

OF POOR QUALITY

4

ORIGiN



121

Section 10:
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Figure 5. Photocopy A of flown aerial photograph for section 10, 1987.
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Appendix C. NETS Interface Routine Code

Mac_to_ NETS.c

!/ (IR S22 ITd BT RSET 23Rt 322 18 21d3

Date: 6/17/90

Programmer: Xin Zhuang, AGEN, Purdue Univ.,
W. Lafayene, IN 47906

Routine name: Mac_to_NETS.c

Description: Converting an ASCII data file listed on
MacLARSYS 10 NASA NETS format
which is binary-coded.

#include <stdio.h>

#define YES 1

#define NO O

#define minus(y x) (y-x)

FILE *fopen();
FILE *infile;

FILE *infile_image;
FILE *infile_class;

FILE *owfile_image; /* a file for a multi-band image */

FILE *outfile_classy; /* a file for classes %/
FILE *outfile_iop; /* a NETS training file */

int MaxClass = 7;

char MacFile{10];
char Image[10];
char Class{10};
char NetsFile[10];

main()

{
Get_MacFile_Name();
Get_ImageFile_and_ClassFile_Names();

MacFile_to_Image_and_Class();
l“.“
Degroup a MacFile to a image file and a class file
getting rid of the row & colum # and Field #.

‘.‘.t,

Create_NetsFile();
I‘ "%y

Generate the ASCII1ype binary codes for NETS.

.t“‘/

}

Get_MacFile_Name()
{

printf("Enter MacFile Name==> ");
scanf("%s", MacFile);

Get_ImageFile_and_ClassFile_Names()
{
int ij;
i=j=0;
while ((Image[i++] = MacFile[j++]) 1=" ')

+

-
Imagefi++}=".";
Imageli] ="'T";

l‘t."

The corresponding image file name is with entension T".

srere
i=j=0
while ((Class[i++] = MacFile[j++]) I=* *)
—i: ;
Classi++] =";

Class[i] ='C";

/t‘t“

The corresponding class file name is with entension "T".

t‘ttt/

}

MacFile_to_Image_snd_Class()
{

int Row, Col, class, field;
int band1, band2, band3, band4, band5, band6, band7, band8;
infile = fopen(MacFile, "r");

outfile_image = fopen(Image, "w");
outfile_class = fopen(Class, "w");

while( fscanf(infile, " %d%d%d %d %d%d %d %d %d %od %od %d0,



&Row, &Col, &class, &field,
&bandl, &band2, &band3, &band4, &band$,
&band6, &band7, &band8) I= EOF)
{

fprintf(outfile_image, "(");

fprintf(outfile_image, "%d %d %d %d %d %d %d %d",
band1, band2, band3, band4, band$, band6, band7, band8);

fprintf(outfile_image, ")0);
/tt.‘ L]

The parentheses are for the Make_Bin routine.

t““/

fprintf(outfile_class, "%d0, class);

fprintf(outfile_class,™ ");
fclose(infile);
fclose(outfile_image);

fclose(outfile_class);
)

Create_NewsFile()

)

{
intc;

infile_image = fopen(Image,"r");
infile_class = fopen(Class,"r");

Get _NETS_iopFile_Name();

printf("%s0, NetsFile);
outfile_iop = fopen(NewusFile, "w");

printf("%s0, NetsFile);

Write_ASCII_Bin_Image();

fclose(infile_image);
fclose(infile_class);
fclose(outfile_iop);

Get_NETS_iopFile_Name()

{

inti, j;
i =j=0;
while (NetsFile[i++] = MacFile[j++]) 1=" )

-
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NeusFilei++] =".";

NetsFilefi++] = "i";

NetsFile[i++] ="0";

NetsFile[i] ="p";
/‘““

The corresponding class file name is with entension "iop”.

‘t“‘/

1

Write_ASCII_Bin_Image()

/‘t‘.‘.‘

SO EOEAREERAES S RSN
This function was written by Ranjan Muttiah for
converting a ASCII file to a ASCII-binay file.

It was modified to be suitable for converting

an image fiel.

EA L L L L]

{

int ¢, k, i, ok, I, junk, temp=0;
char ch[S];
unsigned number;

LA L L

---t.t..t.‘t.lt“‘.‘t/

puic(’(’, outfile_iop);
while ((c = getc(infile_image)) 1= EOF) {

ungetc(c, infile_image);
ok = YES;
junk = NO;

for (i=0;i<=5;i++) ch[i] = 0;

i=0;
while((ok = YES) && ((c = getc(infile_image)) 1=" ")) {
if{({c == EOF)iI(c == "0)ll(c == *-")il(c == ")"}i(c == "(")))
ok =NQO;
else { chli++])=¢; temp++; }

}

if (c ="-") (while ((c = gewc(infile_image)) I= '0);if (temp == O)junk = YES;)

if(i 1= 0) number = atci(ch); /* First clement is *(* */
1=0,k=0;
while ((++ < 8) && (i 1=0))

if ((number & 1) == 1)
{
putc(’0’, outfile_iop);
putc(’.’, outfile_iop);
putc("9’, outfile_iop);
if (ch[i] 1="0)
putc(’ °, outfile_jop):
if ((chli] = '0) && (k++ < 7))
putc(’ *, outfile_iop);
}

else
{



putc('0’, outfile_jop);
putc(’.’, outfile_ijop);
putc('l’, outfile_iop);
if (chli] I="0)
putc(’ *outfile_iop);
if ((ch{i] = '0) && (k++ < 7))
putc(’ °, outfile_iop);
}
number = number >> 1;
}

if (c == "0 && junk == NO && (c = getc(infile_image)) I= EOF)

{
Write_ASCII_Bin_Class();
putc(’)’, outfile_jop);
putc(*0, outfile_iop);
putc('(, outfile_iop),

ungetc(c, infile_image);
temp = 0;
}
)
Write_ASCII_Bin_Class();
putc(’)’, outfile_iop);

atoi(s)
char s[];
{
inti,n
n=0;
for (i=0;s(i] >='0" && s[i] <="9"; ++i)
n=10*n +sfi] -'0";
retumn(n);

}

Write_ ASCII_Bin_Class()
{

int class; /* variable for the class number */
int zero; /* # of zero in class thermometer coding */

fscanf(infile_class,”%d", &class);

zero = minus(MaxClass, class);
Print_out_Class_Code(zero, class);

Print_out_Class_Code(num_null, num_one)
int num_null, num_one;

{

int i;
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for (i=1; i<=num_one; i++)

{
fprintf(outfile_iop,” .9");
}

for (i=1; i<=num_null; i++)

[
fprintf(outfile_iop,” .17);

}

decode.c

P“"t“ttttt‘t.“““"t‘.‘t‘.tttt..“t‘t“ttt‘tttttt

Dale: 6/17/90

Programmer: Xin Zhuang, AGEN, Purdue Univ.,
W. Lafayette, IN 47906

Routine name: decode.c

Description: Decoding a NASA NETS result toa
ASCII-binary file.

tt‘t‘.“..“tt".t‘““.‘t“.t‘.'.tt“““‘t‘ttt!tttt‘i/

#include <sidio.h>

#definc minus(y x) (y-x)

#define MXPXL 940*220  /* maximum ¥ of pixels */
#define MXGRY_LEVEL 16 /* maximum # of pixels */
#define THRSHLD 0.70 /* decoding threshold

(if THRSHLD>{.51, then the code value is 1) */
#define MXCLSS 13 /* maximum # of classes */

#define NAMELEN 32 /* maximum length of output filename */

FILE *fopen();
FILE *infile;

FILE *outfile;
FILE *logfile;

int row_num, /* # of lines of the source file */
col_num, /* # of pixels of the source file */
total_num_pixel;

char file_out{NAMELEN]; /* name of the output file */
char file_in[NAMELEN]; /* name of the output file */

float image_gis[MXCLSS};
int class[MXCLSS];



main(argcargv) }
int argc;
char *argv(];
{
inti_pixel, j; get_total_num_pixel()

char indication[4]{10], bracket_left, bracket_righ; {

total_num_pixel = row_num * col_num;
input_para(); }
infile = fopen(file_in, "r");
outfile = fopen(file_out, "w");
input_image_gis_data()
get_total_num_pixel(); {

inti_class;
for (i_pixel=0; i_pixel<total_num_pixel; i_pixel++)
{

for (i_class=0; i_class<MXCLSS; i_class++)

for (j=0; j<4; j++) {
{
fscanf(infile, "%s" indication(j]); fscanf(infile,"%f", &image_gis[i_class]);
/* printf("%s0, indication[j]);*/
} /* prind(" %f ", image_gis{i_class]);*/
fscanf(infile,”0); P geps
r prinf("0);/
fscanf(infile,"%c", &bracket_left);
/* printf("%c", bracket_left);*/ }
input_image_gis_data(); fscanf(infile,"0);
output_gis_gray_code();
fscanf(infile,”%c0, &bracket_right); ]
}
output_gis_gray
fclose(intle): ( put_gis_gray_code()
fclose(outfile);
int i_class;
}
for (i_class=0; i_class<MXCLSS; i_class++)
{
input_para()
{ if ( image_gis{i_class] < THRSHLD )
fprint(outfile,"0.1 ");
printf("Enter image_gis data file =—> "), else
scanf("%s", file_in); fprintf(outfile,”0.9 ");
printf(" >> Enter # of lines of each input file : "); }

scanf("%d", &row_num);

fprintf(outfile,"0);
printf(" >> Enter # of pixels in a line : ");
scanf("%d", &col_num);

printf("Each source file is [%d x %d].0, row_num, col_num);

printd(" >> Enter the name of the output file : );
scanf("%s", file_out);
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makegis.c

/‘““““‘O‘--- el L AL P I 2T I YT

Date: 6/17/90

Progmmmer: Xin Zhuang, AGEN, Purdue Univ.,
W. Lafayette, IN 47906

Routine name: makegis.c

Description: Making a GIS file which both MacLARSYS
and ERDAS can read based on the result
decoded using "decode.c”.

e " ““..“.“‘t.“t.“‘.!t‘.i“‘l‘/

#include <stdio.h>

#define THRSHLD 0.7 /* decoding threshold
(if THRSHLD>0.7, then the code value is 1) %/

#define nil_or_one(x) (x > THRSHLD 7?1 : 0)

#define MXPXL 940*220  /* maximum # of pixels */
#define MXGRY_LEVEL 16 /* maximum # of pixels */
#define MXCLSS 13 /* maximum # of classes %/

#define NAMELEN 32 * maximum length of output filename */
FILE *fopen();

FILE *infile;

FILE *outfile;

FILE *logfile;

int row_num, /* # of lines of the source file */
col_num, /* # of pixels of the source file */
total_num_pixel,
class_gnay_level;

char file_outNAMELEN];  /* name of the output file */
char file_in[NAMELEN]; /* name of the input file */

float image_gisfMXCLSS];
int class{MXCLSS];

main(argc,argv)
int argc;

char *argv();

{

inti_row, i_col, j;

input_para();

infile = fopen(file_in, "r");
outfile = fopenfile_out, "w");

get_total_num_pixel();
for (i_row=0; i_row<row_num; i_row++)

{
for (i_col=0; i_col<col_num; i_ocol++)
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{

input_image_gis_data();
output_gis_gray_code();

}
fprintf(outfile,"0);
}

fclose(infile);
fclose(outfile);

input_para()

{
printf("Enter image_gis data file ==> ");
scanf("%s", file_in);

printf(" >> Enter # of lines of each input file : );
scanf("%d", &row_num);

printf(" >> Enter # of pixels in a line : ");
scanf("%d", &col_num);

printf("Each source file is [%d x %d].0, row_num, col_num);

prntf(” >> Enter the name of the output file : ";
scanf("%s", file_out);

get_total_num_pixel()
{

total_num_pixel = row_num * col_num;

input_image_gis_data()
{

inti_class;

/* # of NTES output equals # of classes, */
/* so each output has MXCLSS digits.  */

for (i_class=0; i_class<MXCLSS; i_class++)
{



fscanf(infile,"%f", &image _gis(i_class]);
7 printf(" %f ", image_gisi_class]);*/
r*  prmf("0);*/

}

Iscanf(infile,"0);

output_gis_gray_code()
{

int i_class;
char gray_level;

class_gray_level = 0;

for (i_class=0; i_class<MXCLSS; i_class++)

{

if ( nil_or_one(image :_gis[i_class])>0.1)
class_gray_level++;

else

}

i_class = MXCLSS;

awitch (class_gray_level) {

case O:
gray_level =°0’;
break;

case 1:
gray_level ='1";
break;

case 2:
gray_level = °2*;
break;

case 3:
gray_level = °3';
break;

case 4:
gnay_level = *4';
break;

case §:
gray_level = '5°;
break;

case 6:
gray_level = '6";
break;

case 7:
gray_level ='7°;
break;

case 8:
gray_level = '8°;
break;

case 9:
gray_level = '9’;
break;
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case 10:
gray_level = 'A’;
break;

case 11:
gray_level = ‘B’;
break;

case 12:
gray_level = 'C’;
break;

case 13:
gray_level = 'D’;
bresk;

)

fprintf(outfile,"%c", gray_level);

percent.c

P‘“.t..“‘““““.“‘“““““‘.‘t.“‘t.‘.‘
Date: 1780
Programmer:  Xin Zhuang, AGEN, Purdue Univ.,,
W. Lafayette, IN 47906
Routine name: percent.c

Description: This routine is for calculating
correat percentage of classification.
LA LT 1] ‘t.‘.‘.“t"t‘..““t“‘tt“l
#include <stdio.h>
#define NAMELEN 32

/* maximum length of output filename */
#define Get_Correct_Percent(x, y) 100*x/(x + y)
FILE *fopen();
FILE *infile;
FILE *outfile;
FILE *logfile;

char file_outNAMELEN]; /M name of the output file */
char file_in[NAMELEN]; /* name of the output file */

int class_num;
float true =0;
float false = O;
float Percent;
main(argc,argv)

int argc;
char *argv(];
{

charc;



/* Get_OutputFile_Name();*/

int one_or_zero;

float true_plus_false;

input_para();

infile = fopen(file_in, "r");

while( (c = getc(infile)) 1= EOF )
{

if(c1="0)
{

one_or_zero = atoi(c);

if ( one_or_zero == class_num )
true =true + I;

else

false = false + 1;

}
}

Percent = Get_Correct_Percent(true, false);

fclose(infile);

true_plus_false = true + false;

printf("%4.2f0, Percent);
outfile = fopen(file_in, "a");

fprintf(outfile,” %7.2f / %7.2f ) = %4.210, true, true_plus_false, Pe

fclose(outfile);

input_para()

{

Get_OutputFile_Name()

{

print{(" Enter file ==> ");

scanf("%s", file_in);

printf("class num"™);

scanf("%d", &class_num);

intij;

i=j=0

while ((file_outfi++] = file_in[j++]) 1=" *)

—i;

file_outfi++] = ".":
file_out(i] ='P*;

atoi(c)
char ¢;

{

int image_gis;

switch (c) {

case '0':
image_gis = 0;
break;

case'l":
image gis=1;
break;

case '2":
image_gis = 2;
break;

case '3":
image_gis = 3;
break;

case '4";
image_gis = 4;
break;

case 'S";

roent),  image_gis = §:

break;

case '6":
image_gis = 6;
break;

case '7":
image_gis =7;
break;

case '8':
image_gis = 8;
break;

case '9':
image_gis = 9;
break;

case 'A":
image_gis = 10;
break;

case 'B":
image_gis = 11;
break;

case 'C":
image_gis = 12;
break;

case 'D":
image_gis = 13;
break;
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return(image_gis);
)

subset.c
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Date: 6/17/90

Programmer:  Xin Zhuang, AGEN, Purdue Univ.,
W. Lafayette, IN 47906

Routine name: subset.c

Description: This routine is for subsetting and
converting a binary ERDAS file, which
has been removed its header, to an
ASCII one.

EVREEEESENRO RN L1 --.“‘t‘t‘t/

#include <stdio.h>

#include <math.h>

#define MXBUF 256 /* maximum size of buffer */
#define MXBND 12 /* maximum number of data channels */
#define NAMELEN 32 /* maximum length of output filename */

FILE *fopen();
FILE *outfile;

main(argc,argv)
int argc;

char *argv(};

{

int fd[MXBND+1], /* file descriptor of files */

ol, /* # of lines of the source file */
np, /* ¥ of pixels of the source file */
d,

max,

maxdl,

ndum,

nval[MXBND][MXBUF][MXBUF],
oc,i j,id,jjkk,
UL_X, UL_Y,
BR_X, BR_Y,
UL_BR_X, UL_BR_Y:

unsigned char img[MXBND}{MXBUF],
output{MXBUF);  /* buffer */
char owtf(INAMELEN]: /* name of the output file */

printf(" >> Enter # of lines of each input file : ");
scanf("%d", &nl);
printf(" >> Enter # of pixels in a line : ");
scanf("%d", &np);
printf("Each source file is [%d x %d].0, nl,np);
prntfC  >> Enter the name of the output file : ");
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scanf("%s", outf);
prntf(" >> Enter (row,col) of the upper-lefi: "%
scanf("%d%d", &UL_Y, &UL_X);
pntf(" >> Enter (row,col) of the bottom-right: );
scanf("%d%d", &BR_Y, &BR_X);

UL_BR_Y=BR_Y-UL_Y+I;
UL_BR_ X=BR_X-UL_X+1;

prntf(" >> The subset is [%d x %d).0, UL_BR_Y, UL_BR_X):

outfile = fopen(outf, "w");

for(jj=1;jj<argc;++jj)
{
fd[jj]=open(argv{jj],0%
}

/* read image data */

for(ii=1ii<=nl; ++ii)
for(j(j=l dj<argei++jj)
cc=r[ud(fd[ij].ims[ij]m);
) for(kk=0;kk <np; ++kk)
for (jj=1; j(i<xrsc:++ji)
nVll[iJ'][k[kl[ii] = imgljj][kk];

if (ii>=UL_Y && ii <= BR_Y)
if(kk >=UL,_X-1&&kk <=BR_X - 1)
{

fprintf (outfile,”%d " nval(jj][kk][ii]);
}
}
}
ifii >=UL_Y && ii <=BR_Y)
fprind(outfile,"0);
)
fclose(outfile);



